1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
use std::{
collections::{HashMap, VecDeque},
future::Future,
net::{IpAddr, SocketAddr},
str::FromStr,
sync::Arc,
};
use axum::{
response::IntoResponse,
routing::{MethodFilter, MethodRouter},
Router,
};
use bytes::{BufMut as _, BytesMut};
use http::{Method, Request, StatusCode, Uri};
use hyper::{Body, Client, Server};
use tokio::{
select,
sync::{mpsc, oneshot, Mutex, Notify},
};
use tokio_util::codec::Decoder;
use crate::components::validation::{
sync::{Configuring, TaskCoordinator},
RunnerMetrics,
};
use vector_lib::{
codecs::encoding::Framer, codecs::encoding::Serializer::Json,
codecs::CharacterDelimitedEncoder, config::LogNamespace, event::Event,
EstimatedJsonEncodedSizeOf,
};
use super::{encode_test_event, ResourceCodec, ResourceDirection, TestEvent};
/// An HTTP resource.
#[derive(Clone)]
pub struct HttpResourceConfig {
uri: Uri,
method: Option<Method>,
headers: Option<HashMap<String, String>>,
}
impl HttpResourceConfig {
pub const fn from_parts(uri: Uri, method: Option<Method>) -> Self {
Self {
uri,
method,
headers: None,
}
}
pub fn with_headers(mut self, headers: HashMap<String, String>) -> Self {
self.headers = Some(headers);
self
}
pub fn spawn_as_input(
self,
direction: ResourceDirection,
codec: ResourceCodec,
input_rx: mpsc::Receiver<TestEvent>,
task_coordinator: &TaskCoordinator<Configuring>,
runner_metrics: &Arc<Mutex<RunnerMetrics>>,
) {
match direction {
// The source will pull data from us.
ResourceDirection::Pull => {
spawn_input_http_server(self, codec, input_rx, task_coordinator, runner_metrics)
}
// We'll push data to the source.
ResourceDirection::Push => {
spawn_input_http_client(self, codec, input_rx, task_coordinator, runner_metrics)
}
}
}
pub fn spawn_as_output(self, ctx: HttpResourceOutputContext) -> vector_lib::Result<()> {
match ctx.direction {
// We'll pull data from the sink.
ResourceDirection::Pull => Ok(ctx.spawn_output_http_client(self)),
// The sink will push data to us.
ResourceDirection::Push => ctx.spawn_output_http_server(self),
}
}
}
/// Spawns an HTTP server that a source will make requests to in order to get events.
#[allow(clippy::missing_const_for_fn)]
fn spawn_input_http_server(
config: HttpResourceConfig,
codec: ResourceCodec,
mut input_rx: mpsc::Receiver<TestEvent>,
task_coordinator: &TaskCoordinator<Configuring>,
runner_metrics: &Arc<Mutex<RunnerMetrics>>,
) {
// This HTTP server will poll the input receiver for input events and buffer them. When a
// request comes in on the right path/method, one buffered input event will be sent back. If no
// buffered events are available when the request arrives, an empty response (204 No Content) is
// returned to the caller.
let outstanding_events = Arc::new(Mutex::new(VecDeque::new()));
// First, we'll build and spawn our HTTP server.
let encoder = codec.into_encoder();
let sendable_events = Arc::clone(&outstanding_events);
let (resource_notifier, http_server_shutdown_tx) = spawn_http_server(
task_coordinator,
&config,
runner_metrics,
move |_request, _runner_metrics| {
let sendable_events = Arc::clone(&sendable_events);
let mut encoder = encoder.clone();
async move {
let mut sendable_events = sendable_events.lock().await;
if let Some(event) = sendable_events.pop_front() {
let mut buffer = BytesMut::new();
encode_test_event(&mut encoder, &mut buffer, event);
buffer.into_response()
} else {
// We'll send an empty 200 in the response since some
// sources throw errors for anything other than a valid
// response.
StatusCode::OK.into_response()
}
}
},
);
// Now we'll create and spawn the resource's core logic loop which drives the buffering of input
// events and working with the HTTP server as they're consumed.
let resource_started = task_coordinator.track_started();
let resource_completed = task_coordinator.track_completed();
let mut resource_shutdown_rx = task_coordinator.register_for_shutdown();
tokio::spawn(async move {
resource_started.mark_as_done();
info!("HTTP server external input resource started.");
let mut input_finished = false;
loop {
select! {
// Handle input events being sent to us from the runner.
//
// When the channel closes, we'll mark the input as being finished so that we know
// to close the external resource itself once the HTTP server has consumed/sent all
// outstanding events.
maybe_event = input_rx.recv(), if !input_finished => match maybe_event {
Some(event) => {
let mut outstanding_events = outstanding_events.lock().await;
outstanding_events.push_back(event);
},
None => {
info!("HTTP server external input resource input is finished.");
input_finished = true;
},
},
_ = resource_notifier.notified() => {
// The HTTP server notified us that it made progress with a send, which is
// specifically that it serviced a request which returned a non-zero number of
// events.
//
// This indicates that we need to check and see if our input is completed --
// channel closed, no outstanding events left -- and thus if it's time to close.
if input_finished {
let outstanding_events = outstanding_events.lock().await;
if outstanding_events.is_empty() {
break
}
}
},
}
}
// Mark ourselves as completed now that we've sent all inputs to the source, and
// additionally signal the HTTP server to also gracefully shutdown.
info!("HTTP server external input resource signalling ready for shutdown.");
// Wait for the runner to signal us to shutdown
resource_shutdown_rx.wait().await;
// Shutdown the server
_ = http_server_shutdown_tx.send(());
info!("HTTP server external input resource marking as done.");
resource_completed.mark_as_done();
info!("HTTP server external input resource completed.");
});
}
/// Spawns an HTTP client that pushes events to a source which is accepting events over HTTP.
fn spawn_input_http_client(
config: HttpResourceConfig,
codec: ResourceCodec,
mut input_rx: mpsc::Receiver<TestEvent>,
task_coordinator: &TaskCoordinator<Configuring>,
runner_metrics: &Arc<Mutex<RunnerMetrics>>,
) {
// Spin up an HTTP client that will push the input data to the source on a
// request-per-input-item basis. This runs serially and has no parallelism.
let started = task_coordinator.track_started();
let completed = task_coordinator.track_completed();
let mut encoder = codec.into_encoder();
let runner_metrics = Arc::clone(runner_metrics);
tokio::spawn(async move {
// Mark ourselves as started. We don't actually do anything until we get our first input
// message, though.
started.mark_as_done();
info!("HTTP client external input resource started.");
let client = Client::builder().build_http::<Body>();
let request_uri = config.uri;
let request_method = config.method.unwrap_or(Method::POST);
let headers = config.headers.unwrap_or_default();
while let Some(event) = input_rx.recv().await {
debug!("Got event to send from runner.");
let mut buffer = BytesMut::new();
let is_json = matches!(encoder.serializer(), Json(_))
&& matches!(
encoder.framer(),
Framer::CharacterDelimited(CharacterDelimitedEncoder { delimiter: b',' })
);
if is_json {
buffer.put_u8(b'[');
}
encode_test_event(&mut encoder, &mut buffer, event);
if is_json {
if !buffer.is_empty() {
// remove trailing comma from last record
buffer.truncate(buffer.len() - 1);
}
buffer.put_u8(b']');
// in this edge case we have removed the trailing comma (one byte) and added
// opening and closing braces (2 bytes) for a net add of one byte.
let mut runner_metrics = runner_metrics.lock().await;
runner_metrics.sent_bytes_total += 1;
}
let mut request_builder = Request::builder()
.uri(request_uri.clone())
.method(request_method.clone());
for (key, value) in &headers {
request_builder = request_builder.header(key, value);
}
let request = request_builder
.body(buffer.freeze().into())
.expect("should not fail to build request");
match client.request(request).await {
Ok(_response) => {
// TODO: Emit metric that tracks a successful response from the HTTP server.
debug!("Got response from server.");
}
Err(e) => {
// TODO: Emit metric that tracks a failed response from the HTTP server.
error!("Failed to send request: {}", e);
}
}
}
// Mark ourselves as completed now that we've sent all inputs to the source.
completed.mark_as_done();
info!("HTTP client external input resource completed.");
});
}
/// Anything that the output side HTTP external resource needs
pub struct HttpResourceOutputContext<'a> {
pub direction: ResourceDirection,
pub codec: ResourceCodec,
pub output_tx: mpsc::Sender<Vec<Event>>,
pub task_coordinator: &'a TaskCoordinator<Configuring>,
pub input_events: Vec<TestEvent>,
pub runner_metrics: &'a Arc<Mutex<RunnerMetrics>>,
pub log_namespace: LogNamespace,
}
impl HttpResourceOutputContext<'_> {
/// Spawns an HTTP server that accepts events sent by a sink.
#[allow(clippy::missing_const_for_fn)]
fn spawn_output_http_server(&self, config: HttpResourceConfig) -> vector_lib::Result<()> {
// This HTTP server will wait for events to be sent by a sink, and collect them and send them on
// via an output sender. We accept/collect events until we're told to shutdown.
// First, we'll build and spawn our HTTP server.
let decoder = self.codec.into_decoder(self.log_namespace)?;
// Note that we currently don't differentiate which events should and shouldn't be rejected-
// we reject all events in this server if any are marked for rejection.
// In the future it might be useful to be able to select which to reject. That will involve
// adding logic to the test case which is passed down here, and to the event itself. Since
// we can't guarantee the order of events, we'd need a way to flag which ones need to be
// rejected.
let should_reject = self
.input_events
.iter()
.filter(|te| te.should_reject())
.count()
> 0;
let output_tx = self.output_tx.clone();
let (_, http_server_shutdown_tx) = spawn_http_server(
self.task_coordinator,
&config,
self.runner_metrics,
move |request, output_runner_metrics| {
let output_tx = output_tx.clone();
let mut decoder = decoder.clone();
async move {
match hyper::body::to_bytes(request.into_body()).await {
Err(_) => StatusCode::INTERNAL_SERVER_ERROR.into_response(),
Ok(body) => {
let mut body = BytesMut::from(&body[..]);
loop {
match decoder.decode_eof(&mut body) {
Ok(Some((events, byte_size))) => {
if should_reject {
info!("HTTP server external output resource decoded {byte_size} bytes but test case configured to reject.");
} else {
let mut output_runner_metrics =
output_runner_metrics.lock().await;
info!("HTTP server external output resource decoded {byte_size} bytes.");
// Update the runner metrics for the received events. This will later
// be used in the Validators, as the "expected" case.
output_runner_metrics.received_bytes_total +=
byte_size as u64;
output_runner_metrics.received_events_total +=
events.len() as u64;
events.iter().for_each(|event| {
output_runner_metrics.received_event_bytes_total +=
event.estimated_json_encoded_size_of().get()
as u64;
});
output_tx
.send(events.to_vec())
.await
.expect("should not fail to send output event");
}
}
Ok(None) => {
if should_reject {
// This status code is not retried and should result in the component under test
// emitting error events
return StatusCode::BAD_REQUEST.into_response();
} else {
return StatusCode::OK.into_response();
}
}
Err(_) => {
error!(
"HTTP server failed to decode {:?}",
String::from_utf8_lossy(&body)
);
return StatusCode::INTERNAL_SERVER_ERROR.into_response();
}
}
}
}
}
}
},
);
// Now we'll create and spawn the resource's core logic loop which simply waits for the runner
// to instruct us to shutdown, and when that happens, cascades to shutting down the HTTP server.
let resource_started = self.task_coordinator.track_started();
let resource_completed = self.task_coordinator.track_completed();
let mut resource_shutdown_rx = self.task_coordinator.register_for_shutdown();
tokio::spawn(async move {
resource_started.mark_as_done();
info!("HTTP server external output resource started.");
// Wait for the runner to tell us to shutdown
resource_shutdown_rx.wait().await;
// signal the server to shutdown
let _ = http_server_shutdown_tx.send(());
// mark ourselves as done
resource_completed.mark_as_done();
info!("HTTP server external output resource completed.");
});
Ok(())
}
/// Spawns an HTTP client that pulls events by making requests to an HTTP server driven by a sink.
#[allow(clippy::missing_const_for_fn)]
fn spawn_output_http_client(&self, _config: HttpResourceConfig) {
// TODO: The `prometheus_exporter` sink is the only sink that exposes an HTTP server which must be
// scraped... but since we need special logic to aggregate/deduplicate scraped metrics, we can't
// use this generically for that purpose.
todo!()
}
}
fn spawn_http_server<H, F, R>(
task_coordinator: &TaskCoordinator<Configuring>,
config: &HttpResourceConfig,
runner_metrics: &Arc<Mutex<RunnerMetrics>>,
handler: H,
) -> (Arc<Notify>, oneshot::Sender<()>)
where
H: Fn(Request<Body>, Arc<Mutex<RunnerMetrics>>) -> F + Clone + Send + 'static,
F: Future<Output = R> + Send,
R: IntoResponse,
{
let http_server_started = task_coordinator.track_started();
let http_server_completed = task_coordinator.track_completed();
let listen_addr = socketaddr_from_uri(&config.uri);
let request_path = config
.uri
.path_and_query()
.map(|pq| pq.as_str().to_string())
.unwrap_or_else(|| "/".to_string());
let request_method = config.method.clone().unwrap_or(Method::POST);
// Create our synchronization primitives that are shared between the HTTP server and the
// resource's core logic loop.
//
// This will let the resource be able to trigger the HTTP server to gracefully shutdown, as well
// as be notified when the HTTP server has served a request, so that it can check if all input
// events have been sent yet.
let (http_server_shutdown_tx, http_server_shutdown_rx) = oneshot::channel();
let resource_notifier = Arc::new(Notify::new());
let server_notifier = Arc::clone(&resource_notifier);
let output_runner_metrics = Arc::clone(runner_metrics);
tokio::spawn(async move {
// Create our HTTP server by binding as early as possible to return an error if we can't
// actually bind.
let server_builder =
Server::try_bind(&listen_addr).expect("Failed to bind to listen address.");
// Create our router, which is a bit boilerplate-y because we take the HTTP method
// parametrically. We generate a handler that calls the given `handler` and then triggers
// the notifier shared by the HTTP server and the resource's core logic loop.
//
// Every time a request is processed, we notify the core logic loop so it can continue
// checking to see if it's time to fully close once all input events have been consumed and
// the input receiver is closed.
let method_filter = MethodFilter::try_from(request_method)
.expect("should not fail to convert method to method filter");
let method_router = MethodRouter::new()
.fallback(|req: Request<Body>| async move {
error!(
path = req.uri().path(),
method = req.method().as_str(),
"Component sent request to a different path/method than expected."
);
StatusCode::METHOD_NOT_ALLOWED
})
.on(method_filter, move |request: Request<Body>| {
let request_handler = handler(request, output_runner_metrics);
let notifier = Arc::clone(&server_notifier);
async move {
let response = request_handler.await;
notifier.notify_one();
response
}
});
let router = Router::new().route(&request_path, method_router).fallback(
|req: Request<Body>| async move {
error!(?req, "Component sent request the server could not route.");
StatusCode::NOT_FOUND
},
);
// Now actually run/drive the HTTP server and process requests until we're told to shutdown.
http_server_started.mark_as_done();
let server = server_builder
.serve(router.into_make_service())
.with_graceful_shutdown(async {
http_server_shutdown_rx.await.ok();
});
if let Err(e) = server.await {
error!(error = ?e, "HTTP server encountered an error.");
}
http_server_completed.mark_as_done();
});
(resource_notifier, http_server_shutdown_tx)
}
fn socketaddr_from_uri(uri: &Uri) -> SocketAddr {
let uri_port = uri.port_u16().unwrap_or(80);
let uri_host = uri
.host()
.ok_or_else(|| "host must be present in URI".to_string())
.and_then(|host| {
IpAddr::from_str(host)
.map_err(|_| "URI host must be valid IPv4/IPv6 address".to_string())
})
.expect("HTTP URI not valid");
SocketAddr::from((uri_host, uri_port))
}