1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
use std::collections::VecDeque;
use vector_lib::event::{metric::MetricData, Metric, MetricValue};
#[allow(clippy::large_enum_variant)]
enum SplitState {
Single(Option<Metric>),
Multiple(VecDeque<Metric>),
}
/// An iterator that returns the result of a metric split operation.
pub struct SplitIterator {
state: SplitState,
}
impl SplitIterator {
/// Creates an iterator for a single metric.
pub const fn single(metric: Metric) -> Self {
Self {
state: SplitState::Single(Some(metric)),
}
}
/// Creates an iterator for multiple metrics.
pub fn multiple<I>(metrics: I) -> Self
where
I: Into<VecDeque<Metric>>,
{
Self {
state: SplitState::Multiple(metrics.into()),
}
}
}
impl Iterator for SplitIterator {
type Item = Metric;
fn next(&mut self) -> Option<Self::Item> {
match &mut self.state {
SplitState::Single(metric) => metric.take(),
SplitState::Multiple(metrics) => metrics.pop_front(),
}
}
}
/// Splits a metric into potentially multiple metrics.
///
/// In some cases, a single metric may represent multiple fundamental metrics: an aggregated summary or histogram can
/// represent a count, sum, and subtotals for a given measurement. These metrics may be able to be handled
/// natively/directly in a sink, but in other cases, those fundamental metrics may need to be extracted and operated on individually.
///
/// This trait defines a simple interface for defining custom rules about what metrics to split and when to split them.
pub trait MetricSplit {
/// Attempts to split the metric.
///
/// The returned iterator will either return only the input metric if no splitting occurred, or all resulting
/// metrics that were created as a result of the split.
fn split(&mut self, input: Metric) -> SplitIterator;
}
/// A self-contained metric splitter.
///
/// The splitter state is stored internally, and it can only be created from a splitter implementation that is either
/// `Default` or is constructed ahead of time, so it is primarily useful for constructing a usable splitter via implicit
/// conversion methods or when no special parameters are required for configuring the underlying splitter.
pub struct MetricSplitter<S> {
splitter: S,
}
impl<S: MetricSplit> MetricSplitter<S> {
/// Attempts to split the metric.
///
/// For more information about splitting, see the documentation for [`MetricSplit::split`].
pub fn split(&mut self, input: Metric) -> SplitIterator {
self.splitter.split(input)
}
}
impl<S: Default> Default for MetricSplitter<S> {
fn default() -> Self {
Self {
splitter: S::default(),
}
}
}
impl<S> From<S> for MetricSplitter<S> {
fn from(splitter: S) -> Self {
Self { splitter }
}
}
/// A splitter that separates an aggregated summary into its various parts.
///
/// Generally speaking, all metric types supported by Vector have way to be added to and removed from other instances of
/// themselves, such as merging two counters by adding together their values, or merging two distributions simply be
/// adding all of their samples together.
///
/// However, one particular metric type is not amenable to these operations: aggregated summaries. Hailing from
/// Prometheus, aggregated summaries are meant to be client-side generated versions of summary data about a histogram:
/// count, sum, and various quantiles. As quantiles themselves cannot simply be added to or removed from each other
/// without entirely altering the statistical significancy of their value, we often do not do anything with them except
/// forwards them on directly as their individual pieces, or even drop them.
///
/// However, as many sinks must do this, this splitter exists to bundle the operation in a reusable piece of code that
/// all sinks needing to do so can share.
///
/// All other metric types are passed through as-is.
#[derive(Clone, Copy, Debug, Default)]
pub struct AggregatedSummarySplitter;
impl MetricSplit for AggregatedSummarySplitter {
fn split(&mut self, input: Metric) -> SplitIterator {
let (series, data, metadata) = input.into_parts();
match data.value() {
// If it's not an aggregated summary, just send it on semi-unchanged. :)
MetricValue::Counter { .. }
| MetricValue::Gauge { .. }
| MetricValue::Set { .. }
| MetricValue::Distribution { .. }
| MetricValue::AggregatedHistogram { .. }
| MetricValue::Sketch { .. } => {
SplitIterator::single(Metric::from_parts(series, data, metadata))
}
MetricValue::AggregatedSummary { .. } => {
// Further extract the aggregated summary components so we can generate our multiple metrics.
let (time, kind, value) = data.into_parts();
let (quantiles, count, sum) = match value {
MetricValue::AggregatedSummary {
quantiles,
count,
sum,
} => (quantiles, count, sum),
_ => unreachable!("metric value must be aggregated summary to be here"),
};
// We generate one metric for the count, one metric for the sum, and one metric for each quantile. We
// clone the timestamp, kind, metadata, etc, to keep everything the same as it was on the way in.
let mut metrics = VecDeque::new();
let mut count_series = series.clone();
count_series.name_mut().name_mut().push_str("_count");
let count_data = MetricData::from_parts(
time,
kind,
MetricValue::Counter {
value: count as f64,
},
);
let count_metadata = metadata.clone();
metrics.push_back(Metric::from_parts(count_series, count_data, count_metadata));
for quantile in quantiles {
let mut quantile_series = series.clone();
quantile_series
.replace_tag(String::from("quantile"), quantile.to_quantile_string());
let quantile_data = MetricData::from_parts(
time,
kind,
MetricValue::Gauge {
value: quantile.value,
},
);
let quantile_metadata = metadata.clone();
metrics.push_back(Metric::from_parts(
quantile_series,
quantile_data,
quantile_metadata,
));
}
let mut sum_series = series;
sum_series.name_mut().name_mut().push_str("_sum");
let sum_data =
MetricData::from_parts(time, kind, MetricValue::Counter { value: sum });
let sum_metadata = metadata;
metrics.push_back(Metric::from_parts(sum_series, sum_data, sum_metadata));
SplitIterator::multiple(metrics)
}
}
}
}
#[cfg(test)]
mod tests {
use std::collections::BTreeSet;
use vector_lib::event::{
metric::{Bucket, MetricTags, Quantile, Sample},
Metric, MetricKind, MetricValue, StatisticKind,
};
use super::{AggregatedSummarySplitter, MetricSplitter};
#[test]
fn test_agg_summary_split() {
let mut splitter: MetricSplitter<AggregatedSummarySplitter> = MetricSplitter::default();
let counter = Metric::new(
"counter",
MetricKind::Incremental,
MetricValue::Counter { value: 42.0 },
);
let gauge = Metric::new(
"gauge",
MetricKind::Absolute,
MetricValue::Gauge { value: 3.15 },
);
let set = Metric::new(
"set",
MetricKind::Absolute,
MetricValue::Set {
values: BTreeSet::from([String::from("foobar")]),
},
);
let distribution = Metric::new(
"distribution",
MetricKind::Incremental,
MetricValue::Distribution {
statistic: StatisticKind::Histogram,
samples: vec![Sample {
value: 13.37,
rate: 10,
}],
},
);
let agg_histo = Metric::new(
"agg_histo",
MetricKind::Absolute,
MetricValue::AggregatedHistogram {
buckets: vec![
Bucket {
upper_limit: 10.0,
count: 5,
},
Bucket {
upper_limit: 25.0,
count: 2,
},
],
count: 7,
sum: 100.0,
},
);
let agg_summary = Metric::new(
"agg_summary",
MetricKind::Absolute,
MetricValue::AggregatedSummary {
quantiles: vec![
Quantile {
quantile: 0.05,
value: 10.0,
},
Quantile {
quantile: 0.95,
value: 25.0,
},
],
count: 7,
sum: 100.0,
},
);
let quantile_tag = |q: f64| -> Option<MetricTags> {
let quantile = Quantile {
quantile: q,
value: 0.0,
};
Some(
vec![("quantile".to_owned(), quantile.to_quantile_string())]
.into_iter()
.collect(),
)
};
let agg_summary_splits = vec![
Metric::new(
"agg_summary_count",
MetricKind::Absolute,
MetricValue::Counter { value: 7.0 },
),
Metric::new(
"agg_summary",
MetricKind::Absolute,
MetricValue::Gauge { value: 10.0 },
)
.with_tags(quantile_tag(0.05)),
Metric::new(
"agg_summary",
MetricKind::Absolute,
MetricValue::Gauge { value: 25.0 },
)
.with_tags(quantile_tag(0.95)),
Metric::new(
"agg_summary_sum",
MetricKind::Absolute,
MetricValue::Counter { value: 100.0 },
),
];
let cases = &[
(counter.clone(), vec![counter]),
(gauge.clone(), vec![gauge]),
(set.clone(), vec![set]),
(distribution.clone(), vec![distribution]),
(agg_histo.clone(), vec![agg_histo]),
(agg_summary, agg_summary_splits),
];
for (input, expected) in cases {
let actual = splitter.split(input.clone()).collect::<Vec<_>>();
assert_eq!(expected.clone(), actual);
}
}
}