1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
use std::{
    borrow::Cow,
    cmp,
    future::Future,
    pin::Pin,
    task::{Context, Poll},
    time::Duration,
};

use futures::FutureExt;
use tokio::time::{sleep, Sleep};
use tower::{retry::Policy, timeout::error::Elapsed};
use vector_lib::configurable::configurable_component;

use crate::Error;

pub enum RetryAction {
    /// Indicate that this request should be retried with a reason
    Retry(Cow<'static, str>),
    /// Indicate that this request should not be retried with a reason
    DontRetry(Cow<'static, str>),
    /// Indicate that this request should not be retried but the request was successful
    Successful,
}

pub trait RetryLogic: Clone + Send + Sync + 'static {
    type Error: std::error::Error + Send + Sync + 'static;
    type Response;

    /// When the Service call returns an `Err` response, this function allows
    /// implementors to specify what kinds of errors can be retried.
    fn is_retriable_error(&self, error: &Self::Error) -> bool;

    /// When the Service call returns an `Ok` response, this function allows
    /// implementors to specify additional logic to determine if the success response
    /// is actually an error. This is particularly useful when the downstream service
    /// of a sink returns a transport protocol layer success but error data in the
    /// response body. For example, an HTTP 200 status, but the body of the response
    /// contains a list of errors encountered while processing.
    fn should_retry_response(&self, _response: &Self::Response) -> RetryAction {
        // Treat the default as the request is successful
        RetryAction::Successful
    }
}

/// The jitter mode to use for retry backoff behavior.
#[configurable_component]
#[derive(Clone, Copy, Debug, Default)]
pub enum JitterMode {
    /// No jitter.
    None,

    /// Full jitter.
    ///
    /// The random delay is anywhere from 0 up to the maximum current delay calculated by the backoff
    /// strategy.
    ///
    /// Incorporating full jitter into your backoff strategy can greatly reduce the likelihood
    /// of creating accidental denial of service (DoS) conditions against your own systems when
    /// many clients are recovering from a failure state.
    #[default]
    Full,
}

#[derive(Debug, Clone)]
pub struct FibonacciRetryPolicy<L> {
    remaining_attempts: usize,
    previous_duration: Duration,
    current_duration: Duration,
    jitter_mode: JitterMode,
    current_jitter_duration: Duration,
    max_duration: Duration,
    logic: L,
}

pub struct RetryPolicyFuture<L: RetryLogic> {
    delay: Pin<Box<Sleep>>,
    policy: FibonacciRetryPolicy<L>,
}

impl<L: RetryLogic> FibonacciRetryPolicy<L> {
    pub fn new(
        remaining_attempts: usize,
        initial_backoff: Duration,
        max_duration: Duration,
        logic: L,
        jitter_mode: JitterMode,
    ) -> Self {
        FibonacciRetryPolicy {
            remaining_attempts,
            previous_duration: Duration::from_secs(0),
            current_duration: initial_backoff,
            jitter_mode,
            current_jitter_duration: Self::add_full_jitter(initial_backoff),
            max_duration,
            logic,
        }
    }

    fn add_full_jitter(d: Duration) -> Duration {
        let jitter = (rand::random::<u64>() % (d.as_millis() as u64)) + 1;
        Duration::from_millis(jitter)
    }

    fn advance(&self) -> FibonacciRetryPolicy<L> {
        let next_duration: Duration = cmp::min(
            self.previous_duration + self.current_duration,
            self.max_duration,
        );

        FibonacciRetryPolicy {
            remaining_attempts: self.remaining_attempts - 1,
            previous_duration: self.current_duration,
            current_duration: next_duration,
            current_jitter_duration: Self::add_full_jitter(next_duration),
            jitter_mode: self.jitter_mode,
            max_duration: self.max_duration,
            logic: self.logic.clone(),
        }
    }

    const fn backoff(&self) -> Duration {
        match self.jitter_mode {
            JitterMode::None => self.current_duration,
            JitterMode::Full => self.current_jitter_duration,
        }
    }

    fn build_retry(&self) -> RetryPolicyFuture<L> {
        let policy = self.advance();
        let delay = Box::pin(sleep(self.backoff()));

        debug!(message = "Retrying request.", delay_ms = %self.backoff().as_millis());
        RetryPolicyFuture { delay, policy }
    }
}

impl<Req, Res, L> Policy<Req, Res, Error> for FibonacciRetryPolicy<L>
where
    Req: Clone,
    L: RetryLogic<Response = Res>,
{
    type Future = RetryPolicyFuture<L>;

    // NOTE: in the error cases- `Error` and `EventsDropped` internal events are emitted by the
    // driver, so only need to log here.
    fn retry(&self, _: &Req, result: Result<&Res, &Error>) -> Option<Self::Future> {
        match result {
            Ok(response) => match self.logic.should_retry_response(response) {
                RetryAction::Retry(reason) => {
                    if self.remaining_attempts == 0 {
                        error!(
                            message = "OK/retry response but retries exhausted; dropping the request.",
                            reason = ?reason,
                            internal_log_rate_limit = true,
                        );
                        return None;
                    }

                    warn!(message = "Retrying after response.", reason = %reason, internal_log_rate_limit = true);
                    Some(self.build_retry())
                }

                RetryAction::DontRetry(reason) => {
                    error!(message = "Not retriable; dropping the request.", reason = ?reason, internal_log_rate_limit = true);
                    None
                }

                RetryAction::Successful => None,
            },
            Err(error) => {
                if self.remaining_attempts == 0 {
                    error!(message = "Retries exhausted; dropping the request.", %error, internal_log_rate_limit = true);
                    return None;
                }

                if let Some(expected) = error.downcast_ref::<L::Error>() {
                    if self.logic.is_retriable_error(expected) {
                        warn!(message = "Retrying after error.", error = %expected, internal_log_rate_limit = true);
                        Some(self.build_retry())
                    } else {
                        error!(
                            message = "Non-retriable error; dropping the request.",
                            %error,
                            internal_log_rate_limit = true,
                        );
                        None
                    }
                } else if error.downcast_ref::<Elapsed>().is_some() {
                    warn!(
                        message = "Request timed out. If this happens often while the events are actually reaching their destination, try decreasing `batch.max_bytes` and/or using `compression` if applicable. Alternatively `request.timeout_secs` can be increased.",
                        internal_log_rate_limit = true
                    );
                    Some(self.build_retry())
                } else {
                    error!(
                        message = "Unexpected error type; dropping the request.",
                        %error,
                        internal_log_rate_limit = true
                    );
                    None
                }
            }
        }
    }

    fn clone_request(&self, request: &Req) -> Option<Req> {
        Some(request.clone())
    }
}

// Safety: `L` is never pinned and we use no unsafe pin projections
// therefore this safe.
impl<L: RetryLogic> Unpin for RetryPolicyFuture<L> {}

impl<L: RetryLogic> Future for RetryPolicyFuture<L> {
    type Output = FibonacciRetryPolicy<L>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        std::task::ready!(self.delay.poll_unpin(cx));
        Poll::Ready(self.policy.clone())
    }
}

impl RetryAction {
    pub const fn is_retryable(&self) -> bool {
        matches!(self, RetryAction::Retry(_))
    }

    pub const fn is_not_retryable(&self) -> bool {
        matches!(self, RetryAction::DontRetry(_))
    }

    pub const fn is_successful(&self) -> bool {
        matches!(self, RetryAction::Successful)
    }
}

// `tokio-retry` crate
// MIT License
// Copyright (c) 2017 Sam Rijs
//
/// A retry strategy driven by exponential back-off.
///
/// The power corresponds to the number of past attempts.
#[derive(Debug, Clone)]
pub struct ExponentialBackoff {
    current: u64,
    base: u64,
    factor: u64,
    max_delay: Option<Duration>,
}

impl ExponentialBackoff {
    /// Constructs a new exponential back-off strategy,
    /// given a base duration in milliseconds.
    ///
    /// The resulting duration is calculated by taking the base to the `n`-th power,
    /// where `n` denotes the number of past attempts.
    pub const fn from_millis(base: u64) -> ExponentialBackoff {
        ExponentialBackoff {
            current: base,
            base,
            factor: 1u64,
            max_delay: None,
        }
    }

    /// A multiplicative factor that will be applied to the retry delay.
    ///
    /// For example, using a factor of `1000` will make each delay in units of seconds.
    ///
    /// Default factor is `1`.
    pub const fn factor(mut self, factor: u64) -> ExponentialBackoff {
        self.factor = factor;
        self
    }

    /// Apply a maximum delay. No retry delay will be longer than this `Duration`.
    pub const fn max_delay(mut self, duration: Duration) -> ExponentialBackoff {
        self.max_delay = Some(duration);
        self
    }

    /// Resents the exponential back-off strategy to its initial state.
    pub fn reset(&mut self) {
        self.current = self.base;
    }
}

impl Iterator for ExponentialBackoff {
    type Item = Duration;

    fn next(&mut self) -> Option<Duration> {
        // set delay duration by applying factor
        let duration = if let Some(duration) = self.current.checked_mul(self.factor) {
            Duration::from_millis(duration)
        } else {
            Duration::from_millis(u64::MAX)
        };

        // check if we reached max delay
        if let Some(ref max_delay) = self.max_delay {
            if duration > *max_delay {
                return Some(*max_delay);
            }
        }

        if let Some(next) = self.current.checked_mul(self.base) {
            self.current = next;
        } else {
            self.current = u64::MAX;
        }

        Some(duration)
    }
}

#[cfg(test)]
mod tests {
    use std::{fmt, time::Duration};

    use tokio::time;
    use tokio_test::{assert_pending, assert_ready_err, assert_ready_ok, task};
    use tower::retry::RetryLayer;
    use tower_test::{assert_request_eq, mock};

    use super::*;
    use crate::test_util::trace_init;

    #[tokio::test]
    async fn service_error_retry() {
        trace_init();

        time::pause();

        let policy = FibonacciRetryPolicy::new(
            5,
            Duration::from_secs(1),
            Duration::from_secs(10),
            SvcRetryLogic,
            JitterMode::None,
        );

        let (mut svc, mut handle) = mock::spawn_layer(RetryLayer::new(policy));

        assert_ready_ok!(svc.poll_ready());

        let fut = svc.call("hello");
        let mut fut = task::spawn(fut);

        assert_request_eq!(handle, "hello").send_error(Error(true));

        assert_pending!(fut.poll());

        time::advance(Duration::from_secs(2)).await;
        assert_pending!(fut.poll());

        assert_request_eq!(handle, "hello").send_response("world");
        assert_eq!(fut.await.unwrap(), "world");
    }

    #[tokio::test]
    async fn service_error_no_retry() {
        trace_init();

        let policy = FibonacciRetryPolicy::new(
            5,
            Duration::from_secs(1),
            Duration::from_secs(10),
            SvcRetryLogic,
            JitterMode::None,
        );

        let (mut svc, mut handle) = mock::spawn_layer(RetryLayer::new(policy));

        assert_ready_ok!(svc.poll_ready());

        let mut fut = task::spawn(svc.call("hello"));
        assert_request_eq!(handle, "hello").send_error(Error(false));
        assert_ready_err!(fut.poll());
    }

    #[tokio::test]
    async fn timeout_error() {
        trace_init();

        time::pause();

        let policy = FibonacciRetryPolicy::new(
            5,
            Duration::from_secs(1),
            Duration::from_secs(10),
            SvcRetryLogic,
            JitterMode::None,
        );

        let (mut svc, mut handle) = mock::spawn_layer(RetryLayer::new(policy));

        assert_ready_ok!(svc.poll_ready());

        let mut fut = task::spawn(svc.call("hello"));
        assert_request_eq!(handle, "hello").send_error(Elapsed::new());
        assert_pending!(fut.poll());

        time::advance(Duration::from_secs(2)).await;
        assert_pending!(fut.poll());

        assert_request_eq!(handle, "hello").send_response("world");
        assert_eq!(fut.await.unwrap(), "world");
    }

    #[test]
    fn backoff_grows_to_max() {
        let mut policy = FibonacciRetryPolicy::new(
            10,
            Duration::from_secs(1),
            Duration::from_secs(10),
            SvcRetryLogic,
            JitterMode::None,
        );
        assert_eq!(Duration::from_secs(1), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(1), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(2), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(3), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(5), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(8), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(10), policy.backoff());

        policy = policy.advance();
        assert_eq!(Duration::from_secs(10), policy.backoff());
    }

    #[test]
    fn backoff_grows_to_max_with_jitter() {
        let max_duration = Duration::from_secs(10);
        let mut policy = FibonacciRetryPolicy::new(
            10,
            Duration::from_secs(1),
            max_duration,
            SvcRetryLogic,
            JitterMode::Full,
        );

        let expected_fib = [1, 1, 2, 3, 5, 8];

        for (i, &exp_fib_secs) in expected_fib.iter().enumerate() {
            let backoff = policy.backoff();
            let upper_bound = Duration::from_secs(exp_fib_secs);

            // Check if the backoff is within the expected range, considering the jitter
            assert!(
                !backoff.is_zero() && backoff <= upper_bound,
                "Attempt {}: Expected backoff to be within 0 and {:?}, got {:?}",
                i + 1,
                upper_bound,
                backoff
            );

            policy = policy.advance();
        }

        // Once the max backoff is reached, it should not exceed the max backoff.
        for _ in 0..4 {
            let backoff = policy.backoff();
            assert!(
                !backoff.is_zero() && backoff <= max_duration,
                "Expected backoff to not exceed {:?}, got {:?}",
                max_duration,
                backoff
            );

            policy = policy.advance();
        }
    }

    #[derive(Debug, Clone)]
    struct SvcRetryLogic;

    impl RetryLogic for SvcRetryLogic {
        type Error = Error;
        type Response = &'static str;

        fn is_retriable_error(&self, error: &Self::Error) -> bool {
            error.0
        }
    }

    #[derive(Debug)]
    struct Error(bool);

    impl fmt::Display for Error {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            write!(f, "error")
        }
    }

    impl std::error::Error for Error {}
}