vector/sinks/util/
statistic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use std::cmp::Ordering;

use snafu::Snafu;

use crate::event::metric::Sample;

#[derive(Debug, Snafu)]
pub enum ValidationError {
    #[snafu(display("Quantiles must be in range [0.0,1.0]"))]
    QuantileOutOfRange,
}

#[derive(Debug)]
pub struct DistributionStatistic {
    pub min: f64,
    pub max: f64,
    pub median: f64,
    pub avg: f64,
    pub sum: f64,
    pub count: u64,
    /// (quantile, value)
    pub quantiles: Vec<(f64, f64)>,
}

impl DistributionStatistic {
    pub fn from_samples(source: &[Sample], quantiles: &[f64]) -> Option<Self> {
        let mut bins = source
            .iter()
            .filter(|sample| sample.rate > 0)
            .copied()
            .collect::<Vec<_>>();

        match bins.len() {
            0 => None,
            1 => Some({
                let val = bins[0].value;
                let count = bins[0].rate;
                Self {
                    min: val,
                    max: val,
                    median: val,
                    avg: val,
                    sum: val * count as f64,
                    count: count as u64,
                    quantiles: quantiles.iter().map(|&p| (p, val)).collect(),
                }
            }),
            _ => Some({
                bins.sort_unstable_by(|a, b| {
                    a.value.partial_cmp(&b.value).unwrap_or(Ordering::Equal)
                });

                let min = bins.first().unwrap().value;
                let max = bins.last().unwrap().value;
                let sum = bins
                    .iter()
                    .map(|sample| sample.value * sample.rate as f64)
                    .sum::<f64>();

                for i in 1..bins.len() {
                    bins[i].rate += bins[i - 1].rate;
                }

                let count = bins.last().unwrap().rate;
                let avg = sum / count as f64;

                let median = find_quantile(&bins, 0.5);
                let quantiles = quantiles
                    .iter()
                    .map(|&p| (p, find_quantile(&bins, p)))
                    .collect();

                Self {
                    min,
                    max,
                    median,
                    avg,
                    sum,
                    count: count as u64,
                    quantiles,
                }
            }),
        }
    }
}

/// `bins` is a cumulative histogram
/// We are using R-3 (without choosing the even integer in the case of a tie),
/// it might be preferable to use a more common function, such as R-7.
///
/// List of quantile functions:
/// <https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample>
fn find_quantile(bins: &[Sample], p: f64) -> f64 {
    let count = bins.last().expect("bins is empty").rate;
    find_sample(bins, (p * count as f64).round() as u32)
}

/// `bins` is a cumulative histogram
/// Return the i-th smallest value,
/// i starts from 1 (i == 1 mean the smallest value).
/// i == 0 is equivalent to i == 1.
fn find_sample(bins: &[Sample], i: u32) -> f64 {
    let index = match bins.binary_search_by_key(&i, |sample| sample.rate) {
        Ok(index) => index,
        Err(index) => index,
    };
    bins[index].value
}

pub fn validate_quantiles(quantiles: &[f64]) -> Result<(), ValidationError> {
    if quantiles
        .iter()
        .all(|&quantile| (0.0..=1.0).contains(&quantile))
    {
        Ok(())
    } else {
        Err(ValidationError::QuantileOutOfRange)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    impl PartialEq<Self> for DistributionStatistic {
        fn eq(&self, other: &Self) -> bool {
            self.min == other.min
                && self.max == other.max
                && self.median == other.median
                && self.avg == other.avg
                && self.sum == other.sum
                && self.count == other.count
                && self
                    .quantiles
                    .iter()
                    .zip(other.quantiles.iter())
                    .all(|(this, other)| this.0 == other.0 && this.1 == other.1)
        }
    }

    impl Eq for DistributionStatistic {}

    fn samples(v: &[(f64, u32)]) -> Vec<Sample> {
        v.iter()
            .map(|&(value, rate)| Sample { value, rate })
            .collect()
    }

    #[test]
    fn test_distribution() {
        // should return None on empty input
        assert_eq!(DistributionStatistic::from_samples(&[], &[0.5]), None);
        assert_eq!(
            DistributionStatistic::from_samples(&samples(&[(0.0, 0)]), &[0.5]),
            None
        );

        // test len == 1 case
        assert_eq!(
            DistributionStatistic::from_samples(&samples(&[(0.9, 100)]), &[0.5],).unwrap(),
            DistributionStatistic {
                min: 0.9,
                max: 0.9,
                median: 0.9,
                avg: 0.9,
                sum: 90.0,
                count: 100,
                quantiles: vec![(0.5, 0.9)],
            }
        );

        assert_eq!(
            DistributionStatistic::from_samples(
                &samples(&[(1.0, 1), (2.0, 1), (3.0, 1), (4.0, 1), (5.0, 1)]),
                &[]
            )
            .unwrap(),
            DistributionStatistic {
                min: 1.0,
                max: 5.0,
                median: 3.0,
                avg: 3.0,
                sum: 15.0,
                count: 5,
                quantiles: Vec::new(),
            }
        );

        assert_eq!(
            DistributionStatistic::from_samples(
                &samples(&[(1.0, 1), (2.0, 1), (4.0, 1), (3.0, 1)]),
                &[0.0, 1.0, 0.9]
            )
            .unwrap(),
            DistributionStatistic {
                min: 1.0,
                max: 4.0,
                median: 2.0,
                avg: 2.5,
                sum: 10.0,
                count: 4,
                quantiles: vec![(0.0, 1.0), (1.0, 4.0), (0.9, 4.0)],
            }
        );

        assert_eq!(
            DistributionStatistic::from_samples(
                &samples(&[(1.0, 2), (2.0, 1), (3.0, 4), (4.0, 3)]),
                &[0.75, 0.3, 0.31, 0.29, 0.24],
            )
            .unwrap(),
            DistributionStatistic {
                min: 1.0,
                max: 4.0,
                median: 3.0,
                avg: 2.8,
                sum: 28.0,
                count: 10,
                quantiles: vec![
                    (0.75, 4.0),
                    (0.3, 2.0),
                    (0.31, 2.0),
                    (0.29, 2.0),
                    (0.24, 1.0)
                ],
            }
        );
    }
}