1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
use std::io::Read;

use base64::prelude::{Engine as _, BASE64_STANDARD};
use bytes::Bytes;
use chrono::Utc;
use flate2::read::MultiGzDecoder;
use futures::StreamExt;
use snafu::{ResultExt, Snafu};
use tokio_util::codec::FramedRead;
use vector_common::constants::GZIP_MAGIC;
use vector_lib::codecs::StreamDecodingError;
use vector_lib::lookup::{metadata_path, path, PathPrefix};
use vector_lib::{
    config::{LegacyKey, LogNamespace},
    event::BatchNotifier,
    EstimatedJsonEncodedSizeOf,
};
use vector_lib::{
    finalization::AddBatchNotifier,
    internal_event::{
        ByteSize, BytesReceived, CountByteSize, InternalEventHandle as _, Registered,
    },
};
use vrl::compiler::SecretTarget;
use warp::reject;

use super::{
    errors::{ParseRecordsSnafu, RequestError},
    models::{EncodedFirehoseRecord, FirehoseRequest, FirehoseResponse},
    Compression,
};
use crate::{
    codecs::Decoder,
    config::log_schema,
    event::{BatchStatus, Event},
    internal_events::{
        AwsKinesisFirehoseAutomaticRecordDecodeError, EventsReceived, StreamClosedError,
    },
    sources::aws_kinesis_firehose::AwsKinesisFirehoseConfig,
    SourceSender,
};

#[derive(Clone)]
pub(super) struct Context {
    pub(super) compression: Compression,
    pub(super) store_access_key: bool,
    pub(super) decoder: Decoder,
    pub(super) acknowledgements: bool,
    pub(super) bytes_received: Registered<BytesReceived>,
    pub(super) out: SourceSender,
    pub(super) log_namespace: LogNamespace,
}

/// Publishes decoded events from the FirehoseRequest to the pipeline
pub(super) async fn firehose(
    request_id: String,
    source_arn: String,
    request: FirehoseRequest,
    mut context: Context,
) -> Result<impl warp::Reply, reject::Rejection> {
    let log_namespace = context.log_namespace;
    let events_received = register!(EventsReceived);

    for record in request.records {
        let bytes = decode_record(&record, context.compression)
            .with_context(|_| ParseRecordsSnafu {
                request_id: request_id.clone(),
            })
            .map_err(reject::custom)?;
        context.bytes_received.emit(ByteSize(bytes.len()));

        let mut stream = FramedRead::new(bytes.as_ref(), context.decoder.clone());
        loop {
            match stream.next().await {
                Some(Ok((mut events, _byte_size))) => {
                    events_received.emit(CountByteSize(
                        events.len(),
                        events.estimated_json_encoded_size_of(),
                    ));

                    let (batch, receiver) = context
                        .acknowledgements
                        .then(|| {
                            let (batch, receiver) = BatchNotifier::new_with_receiver();
                            (Some(batch), Some(receiver))
                        })
                        .unwrap_or((None, None));

                    let now = Utc::now();
                    for event in &mut events {
                        if let Some(batch) = &batch {
                            event.add_batch_notifier(batch.clone());
                        }
                        if let Event::Log(ref mut log) = event {
                            log_namespace.insert_vector_metadata(
                                log,
                                log_schema().source_type_key(),
                                path!("source_type"),
                                Bytes::from_static(AwsKinesisFirehoseConfig::NAME.as_bytes()),
                            );
                            // This handles the transition from the original timestamp logic. Originally the
                            // `timestamp_key` was always populated by the `request.timestamp` time.
                            match log_namespace {
                                LogNamespace::Vector => {
                                    log.insert(metadata_path!("vector", "ingest_timestamp"), now);
                                    log.insert(
                                        metadata_path!(AwsKinesisFirehoseConfig::NAME, "timestamp"),
                                        request.timestamp,
                                    );
                                }
                                LogNamespace::Legacy => {
                                    if let Some(timestamp_key) = log_schema().timestamp_key() {
                                        log.try_insert(
                                            (PathPrefix::Event, timestamp_key),
                                            request.timestamp,
                                        );
                                    }
                                }
                            };

                            log_namespace.insert_source_metadata(
                                AwsKinesisFirehoseConfig::NAME,
                                log,
                                Some(LegacyKey::InsertIfEmpty(path!("request_id"))),
                                path!("request_id"),
                                request_id.to_owned(),
                            );
                            log_namespace.insert_source_metadata(
                                AwsKinesisFirehoseConfig::NAME,
                                log,
                                Some(LegacyKey::InsertIfEmpty(path!("source_arn"))),
                                path!("source_arn"),
                                source_arn.to_owned(),
                            );

                            if context.store_access_key {
                                if let Some(access_key) = &request.access_key {
                                    log.metadata_mut().secrets_mut().insert_secret(
                                        "aws_kinesis_firehose_access_key",
                                        access_key,
                                    );
                                }
                            }
                        }
                    }

                    let count = events.len();
                    if let Err(error) = context.out.send_batch(events).await {
                        emit!(StreamClosedError { count });
                        let error = RequestError::ShuttingDown {
                            request_id: request_id.clone(),
                            source: error,
                        };
                        warp::reject::custom(error);
                    }

                    drop(batch);
                    if let Some(receiver) = receiver {
                        match receiver.await {
                            BatchStatus::Delivered => Ok(()),
                            BatchStatus::Rejected => {
                                Err(warp::reject::custom(RequestError::DeliveryFailed {
                                    request_id: request_id.clone(),
                                }))
                            }
                            BatchStatus::Errored => {
                                Err(warp::reject::custom(RequestError::DeliveryErrored {
                                    request_id: request_id.clone(),
                                }))
                            }
                        }?;
                    }
                }
                Some(Err(error)) => {
                    // Error is logged by `crate::codecs::Decoder`, no further
                    // handling is needed here.
                    if !error.can_continue() {
                        break;
                    }
                }
                None => break,
            }
        }
    }

    Ok(warp::reply::json(&FirehoseResponse {
        request_id: request_id.clone(),
        timestamp: Utc::now(),
        error_message: None,
    }))
}

#[derive(Debug, Snafu)]
pub enum RecordDecodeError {
    #[snafu(display("Could not base64 decode request data: {}", source))]
    Base64 { source: base64::DecodeError },
    #[snafu(display("Could not decompress request data as {}: {}", compression, source))]
    Decompression {
        source: std::io::Error,
        compression: Compression,
    },
}

/// Decodes a Firehose record.
fn decode_record(
    record: &EncodedFirehoseRecord,
    compression: Compression,
) -> Result<Bytes, RecordDecodeError> {
    let buf = BASE64_STANDARD
        .decode(record.data.as_bytes())
        .context(Base64Snafu {})?;

    if buf.is_empty() {
        return Ok(Bytes::default());
    }

    match compression {
        Compression::None => Ok(Bytes::from(buf)),
        Compression::Gzip => decode_gzip(&buf[..]).with_context(|_| DecompressionSnafu {
            compression: compression.to_owned(),
        }),
        Compression::Auto => {
            if is_gzip(&buf) {
                decode_gzip(&buf[..]).or_else(|error| {
                    emit!(AwsKinesisFirehoseAutomaticRecordDecodeError {
                        compression: Compression::Gzip,
                        error
                    });
                    Ok(Bytes::from(buf))
                })
            } else {
                // only support gzip for now
                Ok(Bytes::from(buf))
            }
        }
    }
}

fn is_gzip(data: &[u8]) -> bool {
    // The header length of a GZIP file is 10 bytes. The first two bytes of the constant comes from
    // the GZIP file format specification, which is the fixed member header identification bytes.
    // The third byte is the compression method, of which only one is defined which is 8 for the
    // deflate algorithm.
    //
    // Reference: https://datatracker.ietf.org/doc/html/rfc1952 Section 2.3
    data.starts_with(GZIP_MAGIC)
}

fn decode_gzip(data: &[u8]) -> std::io::Result<Bytes> {
    let mut decoded = Vec::new();

    let mut gz = MultiGzDecoder::new(data);
    gz.read_to_end(&mut decoded)?;

    Ok(Bytes::from(decoded))
}

#[cfg(test)]
mod tests {
    use flate2::{write::GzEncoder, Compression};
    use std::io::Write as _;

    use super::*;

    const CONTENT: &[u8] = b"Example";

    #[test]
    fn correctly_detects_gzipped_content() {
        assert!(!is_gzip(CONTENT));
        let mut encoder = GzEncoder::new(Vec::new(), Compression::fast());
        encoder.write_all(CONTENT).unwrap();
        let compressed = encoder.finish().unwrap();
        assert!(is_gzip(&compressed));
    }
}