vector/
stats.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#![allow(missing_docs)]
/// Exponentially Weighted Moving Average
#[derive(Clone, Copy, Debug)]
pub struct Ewma {
    average: Option<f64>,
    alpha: f64,
}

impl Ewma {
    pub const fn new(alpha: f64) -> Self {
        let average = None;
        Self { average, alpha }
    }

    pub const fn average(&self) -> Option<f64> {
        self.average
    }

    /// Update the current average and return it for convenience
    pub fn update(&mut self, point: f64) -> f64 {
        let average = match self.average {
            None => point,
            Some(avg) => point.mul_add(self.alpha, avg * (1.0 - self.alpha)),
        };
        self.average = Some(average);
        average
    }
}

/// Exponentially Weighted Moving Average that starts with a default average value
#[derive(Clone, Copy, Debug)]
pub struct EwmaDefault {
    average: f64,
    alpha: f64,
}

impl EwmaDefault {
    pub const fn new(alpha: f64, initial_value: f64) -> Self {
        Self {
            average: initial_value,
            alpha,
        }
    }

    pub const fn average(&self) -> f64 {
        self.average
    }

    /// Update the current average and return it for convenience
    pub fn update(&mut self, point: f64) -> f64 {
        self.average = point.mul_add(self.alpha, self.average * (1.0 - self.alpha));
        self.average
    }
}

/// Exponentially Weighted Moving Average with variance calculation
#[derive(Clone, Copy, Debug)]
pub struct EwmaVar {
    state: Option<MeanVariance>,
    alpha: f64,
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub struct MeanVariance {
    pub mean: f64,
    pub variance: f64,
}

impl EwmaVar {
    pub const fn new(alpha: f64) -> Self {
        let state = None;
        Self { state, alpha }
    }

    pub const fn state(&self) -> Option<MeanVariance> {
        self.state
    }

    #[cfg(test)]
    pub fn average(&self) -> Option<f64> {
        self.state.map(|state| state.mean)
    }

    #[cfg(test)]
    pub fn variance(&self) -> Option<f64> {
        self.state.map(|state| state.variance)
    }

    /// Update the current average and variance, and return them for convenience
    pub fn update(&mut self, point: f64) -> MeanVariance {
        let (mean, variance) = match self.state {
            None => (point, 0.0),
            Some(state) => {
                let difference = point - state.mean;
                let increment = self.alpha * difference;
                (
                    state.mean + increment,
                    (1.0 - self.alpha) * difference.mul_add(increment, state.variance),
                )
            }
        };
        let state = MeanVariance { mean, variance };
        self.state = Some(state);
        state
    }
}

/// Simple unweighted arithmetic mean
#[derive(Clone, Copy, Debug, Default)]
pub struct Mean {
    mean: f64,
    count: usize,
}

impl Mean {
    /// Update the and return the current average
    pub fn update(&mut self, point: f64) {
        self.count += 1;
        self.mean += (point - self.mean) / self.count as f64;
    }

    pub const fn average(&self) -> Option<f64> {
        match self.count {
            0 => None,
            _ => Some(self.mean),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn mean_update_works() {
        let mut mean = Mean::default();
        assert_eq!(mean.average(), None);
        mean.update(0.0);
        assert_eq!(mean.average(), Some(0.0));
        mean.update(2.0);
        assert_eq!(mean.average(), Some(1.0));
        mean.update(4.0);
        assert_eq!(mean.average(), Some(2.0));
    }

    #[test]
    fn ewma_update_works() {
        let mut mean = Ewma::new(0.5);
        assert_eq!(mean.average(), None);
        mean.update(2.0);
        assert_eq!(mean.average(), Some(2.0));
        mean.update(2.0);
        assert_eq!(mean.average(), Some(2.0));
        mean.update(1.0);
        assert_eq!(mean.average(), Some(1.5));
        mean.update(2.0);
        assert_eq!(mean.average(), Some(1.75));

        assert_eq!(mean.average, Some(1.75));
    }

    #[test]
    fn ewma_variance_update_works() {
        let mut mean = EwmaVar::new(0.5);
        assert_eq!(mean.average(), None);
        assert_eq!(mean.variance(), None);
        mean.update(2.0);
        assert_eq!(mean.average(), Some(2.0));
        assert_eq!(mean.variance(), Some(0.0));
        mean.update(2.0);
        assert_eq!(mean.average(), Some(2.0));
        assert_eq!(mean.variance(), Some(0.0));
        mean.update(1.0);
        assert_eq!(mean.average(), Some(1.5));
        assert_eq!(mean.variance(), Some(0.25));
        mean.update(2.0);
        assert_eq!(mean.average(), Some(1.75));
        assert_eq!(mean.variance(), Some(0.1875));

        assert_eq!(
            mean.state,
            Some(MeanVariance {
                mean: 1.75,
                variance: 0.1875
            })
        );
    }
}