vector/topology/
controller.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use std::sync::Arc;

use futures_util::FutureExt as _;

use tokio::sync::{Mutex, MutexGuard};

#[cfg(feature = "api")]
use crate::api;
use crate::extra_context::ExtraContext;
use crate::internal_events::{VectorRecoveryError, VectorReloadError, VectorReloaded};

use crate::{config, signal::ShutdownError, topology::RunningTopology};

#[derive(Clone, Debug)]
pub struct SharedTopologyController(Arc<Mutex<TopologyController>>);

impl SharedTopologyController {
    pub fn new(inner: TopologyController) -> Self {
        Self(Arc::new(Mutex::new(inner)))
    }

    pub fn blocking_lock(&self) -> MutexGuard<TopologyController> {
        self.0.blocking_lock()
    }

    pub async fn lock(&self) -> MutexGuard<TopologyController> {
        self.0.lock().await
    }

    pub fn try_into_inner(self) -> Result<Mutex<TopologyController>, Self> {
        Arc::try_unwrap(self.0).map_err(Self)
    }
}

pub struct TopologyController {
    pub topology: RunningTopology,
    pub config_paths: Vec<config::ConfigPath>,
    pub require_healthy: Option<bool>,
    #[cfg(feature = "api")]
    pub api_server: Option<api::Server>,
    pub extra_context: ExtraContext,
}

impl std::fmt::Debug for TopologyController {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("TopologyController")
            .field("config_paths", &self.config_paths)
            .field("require_healthy", &self.require_healthy)
            .finish()
    }
}

#[derive(Clone, Debug)]
pub enum ReloadOutcome {
    MissingApiKey,
    Success,
    RolledBack,
    FatalError(ShutdownError),
}

impl TopologyController {
    pub async fn reload(&mut self, mut new_config: config::Config) -> ReloadOutcome {
        new_config
            .healthchecks
            .set_require_healthy(self.require_healthy);

        // Start the api server or disable it, if necessary
        #[cfg(feature = "api")]
        if !new_config.api.enabled {
            if let Some(server) = self.api_server.take() {
                debug!("Dropping api server.");
                drop(server)
            }
        } else if self.api_server.is_none() {
            use crate::internal_events::ApiStarted;
            use std::sync::atomic::AtomicBool;
            use tokio::runtime::Handle;

            debug!("Starting api server.");

            self.api_server = match api::Server::start(
                self.topology.config(),
                self.topology.watch(),
                Arc::<AtomicBool>::clone(&self.topology.running),
                &Handle::current(),
            ) {
                Ok(api_server) => {
                    emit!(ApiStarted {
                        addr: new_config.api.address.unwrap(),
                        playground: new_config.api.playground,
                        graphql: new_config.api.graphql,
                    });

                    Some(api_server)
                }
                Err(error) => {
                    let error = error.to_string();
                    error!("An error occurred that Vector couldn't handle: {}.", error);
                    return ReloadOutcome::FatalError(ShutdownError::ApiFailed { error });
                }
            }
        }

        match self
            .topology
            .reload_config_and_respawn(new_config, self.extra_context.clone())
            .await
        {
            Ok(true) => {
                #[cfg(feature = "api")]
                // Pass the new config to the API server.
                if let Some(ref api_server) = self.api_server {
                    api_server.update_config(self.topology.config());
                }

                emit!(VectorReloaded {
                    config_paths: &self.config_paths
                });
                ReloadOutcome::Success
            }
            Ok(false) => {
                emit!(VectorReloadError);
                ReloadOutcome::RolledBack
            }
            // Trigger graceful shutdown for what remains of the topology
            Err(()) => {
                emit!(VectorReloadError);
                emit!(VectorRecoveryError);
                ReloadOutcome::FatalError(ShutdownError::ReloadFailedToRestore)
            }
        }
    }

    pub async fn stop(self) {
        self.topology.stop().await;
    }

    // The `sources_finished` method on `RunningTopology` only considers sources that are currently
    // running at the time the method is called. This presents a problem when the set of running
    // sources can change while we are waiting on the resulting future to resolve.
    //
    // This function resolves that issue by waiting in two stages. The first is the usual asynchronous
    // wait for the future to complete. When it does, we know that all of the sources that existed when
    // the future was built have finished, but we don't know if that's because they were replaced as
    // part of a reload (in which case we don't want to return yet). To differentiate, we acquire the
    // lock on the topology, create a new future, and check whether it resolves immediately or not. If
    // it does resolve, we know all sources are truly finished because we held the lock during the
    // check, preventing anyone else from adding new sources. If it does not resolve, that indicates
    // that new sources have been added since our original call and we should start the process over to
    // continue waiting.
    pub async fn sources_finished(mutex: SharedTopologyController) {
        loop {
            // Do an initial async wait while the topology is running, making sure not the hold the
            // mutex lock while we wait on sources to finish.
            let initial = {
                let tc = mutex.lock().await;
                tc.topology.sources_finished()
            };
            initial.await;

            // Once the initial signal is tripped, hold lock on the topology while checking again. This
            // ensures that no other task is adding new sources.
            let top = mutex.lock().await;
            if top.topology.sources_finished().now_or_never().is_some() {
                return;
            } else {
                continue;
            }
        }
    }
}