vector/topology/
running.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
use std::{
    collections::{HashMap, HashSet},
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc, Mutex,
    },
};

use super::{
    builder,
    builder::TopologyPieces,
    fanout::{ControlChannel, ControlMessage},
    handle_errors, retain, take_healthchecks,
    task::TaskOutput,
    BuiltBuffer, TaskHandle,
};
use crate::{
    config::{ComponentKey, Config, ConfigDiff, HealthcheckOptions, Inputs, OutputId, Resource},
    event::EventArray,
    extra_context::ExtraContext,
    shutdown::SourceShutdownCoordinator,
    signal::ShutdownError,
    spawn_named,
};
use futures::{future, Future, FutureExt};
use tokio::{
    sync::{mpsc, watch},
    time::{interval, sleep_until, Duration, Instant},
};
use tracing::Instrument;
use vector_lib::buffers::topology::channel::BufferSender;
use vector_lib::tap::topology::{TapOutput, TapResource, WatchRx, WatchTx};
use vector_lib::trigger::DisabledTrigger;

pub type ShutdownErrorReceiver = mpsc::UnboundedReceiver<ShutdownError>;

#[allow(dead_code)]
pub struct RunningTopology {
    inputs: HashMap<ComponentKey, BufferSender<EventArray>>,
    inputs_tap_metadata: HashMap<ComponentKey, Inputs<OutputId>>,
    outputs: HashMap<OutputId, ControlChannel>,
    outputs_tap_metadata: HashMap<ComponentKey, (&'static str, String)>,
    source_tasks: HashMap<ComponentKey, TaskHandle>,
    tasks: HashMap<ComponentKey, TaskHandle>,
    shutdown_coordinator: SourceShutdownCoordinator,
    detach_triggers: HashMap<ComponentKey, DisabledTrigger>,
    pub(crate) config: Config,
    pub(crate) abort_tx: mpsc::UnboundedSender<ShutdownError>,
    watch: (WatchTx, WatchRx),
    pub(crate) running: Arc<AtomicBool>,
    graceful_shutdown_duration: Option<Duration>,
}

impl RunningTopology {
    pub fn new(config: Config, abort_tx: mpsc::UnboundedSender<ShutdownError>) -> Self {
        Self {
            inputs: HashMap::new(),
            inputs_tap_metadata: HashMap::new(),
            outputs: HashMap::new(),
            outputs_tap_metadata: HashMap::new(),
            shutdown_coordinator: SourceShutdownCoordinator::default(),
            detach_triggers: HashMap::new(),
            source_tasks: HashMap::new(),
            tasks: HashMap::new(),
            abort_tx,
            watch: watch::channel(TapResource::default()),
            running: Arc::new(AtomicBool::new(true)),
            graceful_shutdown_duration: config.graceful_shutdown_duration,
            config,
        }
    }

    /// Gets the configuration that represents this running topology.
    pub const fn config(&self) -> &Config {
        &self.config
    }

    /// Creates a subscription to topology changes.
    ///
    /// This is used by the tap API to observe configuration changes, and re-wire tap sinks.
    pub fn watch(&self) -> watch::Receiver<TapResource> {
        self.watch.1.clone()
    }

    /// Signal that all sources in this topology are ended.
    ///
    /// The future returned by this function will finish once all the sources in
    /// this topology have finished. This allows the caller to wait for or
    /// detect that the sources in the topology are no longer
    /// producing. [`Application`][crate::app::Application], as an example, uses this as a
    /// shutdown signal.
    pub fn sources_finished(&self) -> future::BoxFuture<'static, ()> {
        self.shutdown_coordinator.shutdown_tripwire()
    }

    /// Shut down all topology components.
    ///
    /// This function sends the shutdown signal to all sources in this topology
    /// and returns a future that resolves once all components (sources,
    /// transforms, and sinks) have finished shutting down. Transforms and sinks
    /// will shut down automatically once their input tasks finish.
    ///
    /// This function takes ownership of `self`, so once it returns everything
    /// in the [`RunningTopology`] instance has been dropped except for the
    /// `tasks` map. This map gets moved into the returned future and is used to
    /// poll for when the tasks have completed. Once the returned future is
    /// dropped then everything from this RunningTopology instance is fully
    /// dropped.
    pub fn stop(self) -> impl Future<Output = ()> {
        // Update the API's health endpoint to signal shutdown
        self.running.store(false, Ordering::Relaxed);
        // Create handy handles collections of all tasks for the subsequent
        // operations.
        let mut wait_handles = Vec::new();
        // We need a Vec here since source components have two tasks. One for
        // pump in self.tasks, and the other for source in self.source_tasks.
        let mut check_handles = HashMap::<ComponentKey, Vec<_>>::new();

        // We need to give some time to the sources to gracefully shutdown, so
        // we will merge them with other tasks.
        for (key, task) in self.tasks.into_iter().chain(self.source_tasks.into_iter()) {
            let task = task.map(|_result| ()).shared();

            wait_handles.push(task.clone());
            check_handles.entry(key).or_default().push(task);
        }

        // If we reach this, we will forcefully shutdown the sources. If None, we will never force shutdown.
        let deadline = self
            .graceful_shutdown_duration
            .map(|grace_period| Instant::now() + grace_period);

        let timeout = if let Some(deadline) = deadline {
            // If we reach the deadline, this future will print out which components
            // won't gracefully shutdown since we will start to forcefully shutdown
            // the sources.
            let mut check_handles2 = check_handles.clone();
            Box::pin(async move {
                sleep_until(deadline).await;
                // Remove all tasks that have shutdown.
                check_handles2.retain(|_key, handles| {
                    retain(handles, |handle| handle.peek().is_none());
                    !handles.is_empty()
                });
                let remaining_components = check_handles2
                    .keys()
                    .map(|item| item.to_string())
                    .collect::<Vec<_>>()
                    .join(", ");

                error!(
                    components = ?remaining_components,
                    "Failed to gracefully shut down in time. Killing components."
                );
            }) as future::BoxFuture<'static, ()>
        } else {
            Box::pin(future::pending()) as future::BoxFuture<'static, ()>
        };

        // Reports in intervals which components are still running.
        let mut interval = interval(Duration::from_secs(5));
        let reporter = async move {
            loop {
                interval.tick().await;

                // Remove all tasks that have shutdown.
                check_handles.retain(|_key, handles| {
                    retain(handles, |handle| handle.peek().is_none());
                    !handles.is_empty()
                });
                let remaining_components = check_handles
                    .keys()
                    .map(|item| item.to_string())
                    .collect::<Vec<_>>()
                    .join(", ");

                let time_remaining = deadline
                    .map(|d| match d.checked_duration_since(Instant::now()) {
                        Some(remaining) => format!("{} seconds left", remaining.as_secs()),
                        None => "overdue".to_string(),
                    })
                    .unwrap_or("no time limit".to_string());

                info!(
                    remaining_components = ?remaining_components,
                    time_remaining = ?time_remaining,
                    "Shutting down... Waiting on running components."
                );
            }
        };

        // Finishes once all tasks have shutdown.
        let success = futures::future::join_all(wait_handles).map(|_| ());

        // Aggregate future that ends once anything detects that all tasks have shutdown.
        let shutdown_complete_future = future::select_all(vec![
            Box::pin(timeout) as future::BoxFuture<'static, ()>,
            Box::pin(reporter) as future::BoxFuture<'static, ()>,
            Box::pin(success) as future::BoxFuture<'static, ()>,
        ]);

        // Now kick off the shutdown process by shutting down the sources.
        let source_shutdown_complete = self.shutdown_coordinator.shutdown_all(deadline);

        futures::future::join(source_shutdown_complete, shutdown_complete_future).map(|_| ())
    }

    /// Attempts to load a new configuration and update this running topology.
    ///
    /// If the new configuration was valid, and all changes were able to be made -- removing of
    /// old components, changing of existing components, adding of new components -- then `Ok(true)`
    /// is returned.
    ///
    /// If the new configuration is not valid, or not all of the changes in the new configuration
    /// were able to be made, then this method will attempt to undo the changes made and bring the
    /// topology back to its previous state.  If either of these scenarios occur, then `Ok(false)`
    /// is returned.
    ///
    /// # Errors
    ///
    /// If all changes from the new configuration cannot be made, and the current configuration
    /// cannot be fully restored, then `Err(())` is returned.
    pub async fn reload_config_and_respawn(
        &mut self,
        new_config: Config,
        extra_context: ExtraContext,
    ) -> Result<bool, ()> {
        info!("Reloading running topology with new configuration.");

        if self.config.global != new_config.global {
            error!(
                message =
                "Global options can't be changed while reloading config file; reload aborted. Please restart Vector to reload the configuration file."
            );
            return Ok(false);
        }

        // Calculate the change between the current configuration and the new configuration, and
        // shutdown any components that are changing so that we can reclaim their buffers before
        // spawning the new version of the component.
        //
        // We also shutdown any component that is simply being removed entirely.
        let diff = ConfigDiff::new(&self.config, &new_config);
        let buffers = self.shutdown_diff(&diff, &new_config).await;

        // Gives windows some time to make available any port
        // released by shutdown components.
        // Issue: https://github.com/vectordotdev/vector/issues/3035
        if cfg!(windows) {
            // This value is guess work.
            tokio::time::sleep(Duration::from_millis(200)).await;
        }

        // Try to build all of the new components coming from the new configuration.  If we can
        // successfully build them, we'll attempt to connect them up to the topology and spawn their
        // respective component tasks.
        if let Some(mut new_pieces) = TopologyPieces::build_or_log_errors(
            &new_config,
            &diff,
            buffers.clone(),
            extra_context.clone(),
        )
        .await
        {
            // If healthchecks are configured for any of the changing/new components, try running
            // them before moving forward with connecting and spawning.  In some cases, healthchecks
            // failing may be configured as a non-blocking issue and so we'll still continue on.
            if self
                .run_healthchecks(&diff, &mut new_pieces, new_config.healthchecks)
                .await
            {
                self.connect_diff(&diff, &mut new_pieces).await;
                self.spawn_diff(&diff, new_pieces);
                self.config = new_config;

                info!("New configuration loaded successfully.");

                return Ok(true);
            }
        }

        // We failed to build, connect, and spawn all of the changed/new components, so we flip
        // around the configuration differential to generate all the components that we need to
        // bring back to restore the current configuration.
        warn!("Failed to completely load new configuration. Restoring old configuration.");

        let diff = diff.flip();
        if let Some(mut new_pieces) =
            TopologyPieces::build_or_log_errors(&self.config, &diff, buffers, extra_context.clone())
                .await
        {
            if self
                .run_healthchecks(&diff, &mut new_pieces, self.config.healthchecks)
                .await
            {
                self.connect_diff(&diff, &mut new_pieces).await;
                self.spawn_diff(&diff, new_pieces);

                info!("Old configuration restored successfully.");

                return Ok(false);
            }
        }

        error!("Failed to restore old configuration.");

        Err(())
    }

    pub(crate) async fn run_healthchecks(
        &mut self,
        diff: &ConfigDiff,
        pieces: &mut TopologyPieces,
        options: HealthcheckOptions,
    ) -> bool {
        if options.enabled {
            let healthchecks = take_healthchecks(diff, pieces)
                .into_iter()
                .map(|(_, task)| task);
            let healthchecks = future::try_join_all(healthchecks);

            info!("Running healthchecks.");
            if options.require_healthy {
                let success = healthchecks.await;

                if success.is_ok() {
                    info!("All healthchecks passed.");
                    true
                } else {
                    error!("Sinks unhealthy.");
                    false
                }
            } else {
                tokio::spawn(healthchecks);
                true
            }
        } else {
            true
        }
    }

    /// Shuts down any changed/removed component in the given configuration diff.
    ///
    /// If buffers for any of the changed/removed components can be recovered, they'll be returned.
    async fn shutdown_diff(
        &mut self,
        diff: &ConfigDiff,
        new_config: &Config,
    ) -> HashMap<ComponentKey, BuiltBuffer> {
        // First, we shutdown any changed/removed sources. This ensures that we can allow downstream
        // components to terminate naturally by virtue of the flow of events stopping.
        if diff.sources.any_changed_or_removed() {
            let timeout = Duration::from_secs(30);
            let mut source_shutdown_handles = Vec::new();

            let deadline = Instant::now() + timeout;
            for key in &diff.sources.to_remove {
                debug!(component = %key, "Removing source.");

                let previous = self.tasks.remove(key).unwrap();
                drop(previous); // detach and forget

                self.remove_outputs(key);
                source_shutdown_handles
                    .push(self.shutdown_coordinator.shutdown_source(key, deadline));
            }

            for key in &diff.sources.to_change {
                debug!(component = %key, "Changing source.");

                self.remove_outputs(key);
                source_shutdown_handles
                    .push(self.shutdown_coordinator.shutdown_source(key, deadline));
            }

            debug!(
                "Waiting for up to {} seconds for source(s) to finish shutting down.",
                timeout.as_secs()
            );
            futures::future::join_all(source_shutdown_handles).await;

            // Final cleanup pass now that all changed/removed sources have signalled as having shutdown.
            for key in diff.sources.removed_and_changed() {
                if let Some(task) = self.source_tasks.remove(key) {
                    task.await.unwrap().unwrap();
                }
            }
        }

        // Next, we shutdown any changed/removed transforms.  Same as before: we want allow
        // downstream components to terminate naturally by virtue of the flow of events stopping.
        //
        // Since transforms are entirely driven by the flow of events into them from upstream
        // components, the shutdown of sources they depend on, or the shutdown of transforms they
        // depend on, and thus the closing of their buffer, will naturally cause them to shutdown,
        // which is why we don't do any manual triggering of shutdown here.
        for key in &diff.transforms.to_remove {
            debug!(component = %key, "Removing transform.");

            let previous = self.tasks.remove(key).unwrap();
            drop(previous); // detach and forget

            self.remove_inputs(key, diff, new_config).await;
            self.remove_outputs(key);
        }

        for key in &diff.transforms.to_change {
            debug!(component = %key, "Changing transform.");

            self.remove_inputs(key, diff, new_config).await;
            self.remove_outputs(key);
        }

        // Now we'll process any changed/removed sinks.
        //
        // At this point both the old and the new config don't have conflicts in their resource
        // usage. So if we combine their resources, all found conflicts are between to be removed
        // and to be added components.
        let remove_sink = diff
            .sinks
            .removed_and_changed()
            .map(|key| (key, self.config.sink(key).unwrap().resources(key)));
        let add_source = diff
            .sources
            .changed_and_added()
            .map(|key| (key, new_config.source(key).unwrap().inner.resources()));
        let add_sink = diff
            .sinks
            .changed_and_added()
            .map(|key| (key, new_config.sink(key).unwrap().resources(key)));
        let conflicts = Resource::conflicts(
            remove_sink.map(|(key, value)| ((true, key), value)).chain(
                add_sink
                    .chain(add_source)
                    .map(|(key, value)| ((false, key), value)),
            ),
        )
        .into_iter()
        .flat_map(|(_, components)| components)
        .collect::<HashSet<_>>();
        // Existing conflicting sinks
        let conflicting_sinks = conflicts
            .into_iter()
            .filter(|&(existing_sink, _)| existing_sink)
            .map(|(_, key)| key.clone());

        // For any sink whose buffer configuration didn't change, we can reuse their buffer.
        let reuse_buffers = diff
            .sinks
            .to_change
            .iter()
            .filter(|&key| {
                self.config.sink(key).unwrap().buffer == new_config.sink(key).unwrap().buffer
            })
            .cloned()
            .collect::<HashSet<_>>();

        // For any existing sink that has a conflicting resource dependency with a changed/added
        // sink, or for any sink that we want to reuse their buffer, we need to explicit wait for
        // them to finish processing so we can reclaim ownership of those resources/buffers.
        let wait_for_sinks = conflicting_sinks
            .chain(reuse_buffers.iter().cloned())
            .collect::<HashSet<_>>();

        // First, we remove any inputs to removed sinks so they can naturally shut down.
        for key in &diff.sinks.to_remove {
            debug!(component = %key, "Removing sink.");
            self.remove_inputs(key, diff, new_config).await;
        }

        // After that, for any changed sinks, we temporarily detach their inputs (not remove) so
        // they can naturally shutdown and allow us to recover their buffers if possible.
        let mut buffer_tx = HashMap::new();

        for key in &diff.sinks.to_change {
            debug!(component = %key, "Changing sink.");
            if reuse_buffers.contains(key) {
                self.detach_triggers
                    .remove(key)
                    .unwrap()
                    .into_inner()
                    .cancel();

                // We explicitly clone the input side of the buffer and store it so we don't lose
                // it when we remove the inputs below.
                //
                // We clone instead of removing here because otherwise the input will be missing for
                // the rest of the reload process, which violates the assumption that all previous
                // inputs for components not being removed are still available. It's simpler to
                // allow the "old" input to stick around and be replaced (even though that's
                // basically a no-op since we're reusing the same buffer) than it is to pass around
                // info about which sinks are having their buffers reused and treat them differently
                // at other stages.
                buffer_tx.insert(key.clone(), self.inputs.get(key).unwrap().clone());
            }
            self.remove_inputs(key, diff, new_config).await;
        }

        // Now that we've disconnected or temporarily detached the inputs to all changed/removed
        // sinks, we can actually wait for them to shutdown before collecting any buffers that are
        // marked for reuse.
        //
        // If a sink we're removing isn't tying up any resource that a changed/added sink depends
        // on, we don't bother waiting for it to shutdown.
        for key in &diff.sinks.to_remove {
            let previous = self.tasks.remove(key).unwrap();
            if wait_for_sinks.contains(key) {
                debug!(message = "Waiting for sink to shutdown.", %key);
                previous.await.unwrap().unwrap();
            } else {
                drop(previous); // detach and forget
            }
        }

        let mut buffers = HashMap::<ComponentKey, BuiltBuffer>::new();
        for key in &diff.sinks.to_change {
            if wait_for_sinks.contains(key) {
                let previous = self.tasks.remove(key).unwrap();
                debug!(message = "Waiting for sink to shutdown.", %key);
                let buffer = previous.await.unwrap().unwrap();

                if reuse_buffers.contains(key) {
                    // We clone instead of removing here because otherwise the input will be
                    // missing for the rest of the reload process, which violates the assumption
                    // that all previous inputs for components not being removed are still
                    // available. It's simpler to allow the "old" input to stick around and be
                    // replaced (even though that's basically a no-op since we're reusing the same
                    // buffer) than it is to pass around info about which sinks are having their
                    // buffers reused and treat them differently at other stages.
                    let tx = buffer_tx.remove(key).unwrap();
                    let rx = match buffer {
                        TaskOutput::Sink(rx) => rx.into_inner(),
                        _ => unreachable!(),
                    };

                    buffers.insert(key.clone(), (tx, Arc::new(Mutex::new(Some(rx)))));
                }
            }
        }

        buffers
    }

    /// Connects all changed/added components in the given configuration diff.
    pub(crate) async fn connect_diff(
        &mut self,
        diff: &ConfigDiff,
        new_pieces: &mut TopologyPieces,
    ) {
        debug!("Connecting changed/added component(s).");

        // Update tap metadata
        if !self.watch.0.is_closed() {
            for key in &diff.sources.to_remove {
                // Sources only have outputs
                self.outputs_tap_metadata.remove(key);
            }

            for key in &diff.transforms.to_remove {
                // Transforms can have both inputs and outputs
                self.outputs_tap_metadata.remove(key);
                self.inputs_tap_metadata.remove(key);
            }

            for key in &diff.sinks.to_remove {
                // Sinks only have inputs
                self.inputs_tap_metadata.remove(key);
            }

            for key in diff.sources.changed_and_added() {
                if let Some(task) = new_pieces.tasks.get(key) {
                    self.outputs_tap_metadata
                        .insert(key.clone(), ("source", task.typetag().to_string()));
                }
            }

            for key in diff.transforms.changed_and_added() {
                if let Some(task) = new_pieces.tasks.get(key) {
                    self.outputs_tap_metadata
                        .insert(key.clone(), ("transform", task.typetag().to_string()));
                }
            }

            for (key, input) in &new_pieces.inputs {
                self.inputs_tap_metadata
                    .insert(key.clone(), input.1.clone());
            }
        }

        // We configure the outputs of any changed/added sources first, so they're available to any
        // transforms and sinks that come afterwards.
        for key in diff.sources.changed_and_added() {
            debug!(component = %key, "Configuring outputs for source.");
            self.setup_outputs(key, new_pieces).await;
        }

        // We configure the outputs of any changed/added transforms next, for the same reason: we
        // need them to be available to any transforms and sinks that come afterwards.
        for key in diff.transforms.changed_and_added() {
            debug!(component = %key, "Configuring outputs for transform.");
            self.setup_outputs(key, new_pieces).await;
        }

        // Now that all possible outputs are configured, we can start wiring up inputs, starting
        // with transforms.
        for key in diff.transforms.changed_and_added() {
            debug!(component = %key, "Connecting inputs for transform.");
            self.setup_inputs(key, diff, new_pieces).await;
        }

        // Now that all sources and transforms are fully configured, we can wire up sinks.
        for key in diff.sinks.changed_and_added() {
            debug!(component = %key, "Connecting inputs for sink.");
            self.setup_inputs(key, diff, new_pieces).await;
        }

        // We do a final pass here to reconnect unchanged components.
        //
        // Why would we reconnect unchanged components?  Well, as sources and transforms will
        // recreate their fanouts every time they're changed, we can run into a situation where a
        // transform/sink, which we'll call B, is pointed at a source/transform that was changed, which
        // we'll call A, but because B itself didn't change at all, we haven't yet reconnected it.
        //
        // Instead of propagating connections forward -- B reconnecting A forcefully -- we only
        // connect components backwards i.e. transforms to sources/transforms, and sinks to
        // sources/transforms, to ensure we're connecting components in order.
        self.reattach_severed_inputs(diff);

        // Broadcast any topology changes to subscribers.
        if !self.watch.0.is_closed() {
            let outputs = self
                .outputs
                .clone()
                .into_iter()
                .flat_map(|(output_id, control_tx)| {
                    self.outputs_tap_metadata.get(&output_id.component).map(
                        |(component_kind, component_type)| {
                            (
                                TapOutput {
                                    output_id,
                                    component_kind,
                                    component_type: component_type.clone(),
                                },
                                control_tx,
                            )
                        },
                    )
                })
                .collect::<HashMap<_, _>>();

            let mut removals = diff.sources.to_remove.clone();
            removals.extend(diff.transforms.to_remove.iter().cloned());
            self.watch
                .0
                .send(TapResource {
                    outputs,
                    inputs: self.inputs_tap_metadata.clone(),
                    source_keys: diff
                        .sources
                        .changed_and_added()
                        .map(|key| key.to_string())
                        .collect(),
                    sink_keys: diff
                        .sinks
                        .changed_and_added()
                        .map(|key| key.to_string())
                        .collect(),
                    // Note, only sources and transforms are relevant. Sinks do
                    // not have outputs to tap.
                    removals,
                })
                .expect("Couldn't broadcast config changes.");
        }
    }

    async fn setup_outputs(
        &mut self,
        key: &ComponentKey,
        new_pieces: &mut builder::TopologyPieces,
    ) {
        let outputs = new_pieces.outputs.remove(key).unwrap();
        for (port, output) in outputs {
            debug!(component = %key, output_id = ?port, "Configuring output for component.");

            let id = OutputId {
                component: key.clone(),
                port,
            };

            self.outputs.insert(id, output);
        }
    }

    async fn setup_inputs(
        &mut self,
        key: &ComponentKey,
        diff: &ConfigDiff,
        new_pieces: &mut builder::TopologyPieces,
    ) {
        let (tx, inputs) = new_pieces.inputs.remove(key).unwrap();

        let old_inputs = self
            .config
            .inputs_for_node(key)
            .into_iter()
            .flatten()
            .cloned()
            .collect::<HashSet<_>>();

        let new_inputs = inputs.iter().cloned().collect::<HashSet<_>>();
        let inputs_to_add = &new_inputs - &old_inputs;

        for input in inputs {
            let output = self.outputs.get_mut(&input).expect("unknown output");

            if diff.contains(&input.component) || inputs_to_add.contains(&input) {
                // If the input we're connecting to is changing, that means its outputs will have been
                // recreated, so instead of replacing a paused sink, we have to add it to this new
                // output for the first time, since there's nothing to actually replace at this point.
                debug!(component = %key, fanout_id = %input, "Adding component input to fanout.");

                _ = output.send(ControlMessage::Add(key.clone(), tx.clone()));
            } else {
                // We know that if this component is connected to a given input, and neither
                // components were changed, then the output must still exist, which means we paused
                // this component's connection to its output, so we have to replace that connection
                // now:
                debug!(component = %key, fanout_id = %input, "Replacing component input in fanout.");

                _ = output.send(ControlMessage::Replace(key.clone(), tx.clone()));
            }
        }

        self.inputs.insert(key.clone(), tx);
        new_pieces
            .detach_triggers
            .remove(key)
            .map(|trigger| self.detach_triggers.insert(key.clone(), trigger.into()));
    }

    fn remove_outputs(&mut self, key: &ComponentKey) {
        self.outputs.retain(|id, _output| &id.component != key);
    }

    async fn remove_inputs(&mut self, key: &ComponentKey, diff: &ConfigDiff, new_config: &Config) {
        self.inputs.remove(key);
        self.detach_triggers.remove(key);

        let old_inputs = self.config.inputs_for_node(key).expect("node exists");
        let new_inputs = new_config
            .inputs_for_node(key)
            .unwrap_or_default()
            .iter()
            .collect::<HashSet<_>>();

        for input in old_inputs {
            if let Some(output) = self.outputs.get_mut(input) {
                if diff.contains(&input.component)
                    || diff.is_removed(key)
                    || !new_inputs.contains(input)
                {
                    // 3 cases to remove the input:
                    //
                    // Case 1: If the input we're removing ourselves from is changing, that means its
                    // outputs will be recreated, so instead of pausing the sink, we just delete it
                    // outright to ensure things are clean.
                    //
                    // Case 2: If this component itself is being removed, then pausing makes no sense
                    // because it isn't coming back.
                    //
                    // Case 3: This component is no longer connected to the input from new config.
                    debug!(component = %key, fanout_id = %input, "Removing component input from fanout.");

                    _ = output.send(ControlMessage::Remove(key.clone()));
                } else {
                    // We know that if this component is connected to a given input, and it isn't being
                    // changed, then it will exist when we reconnect inputs, so we should pause it
                    // now to pause further sends through that component until we reconnect:
                    debug!(component = %key, fanout_id = %input, "Pausing component input in fanout.");

                    _ = output.send(ControlMessage::Pause(key.clone()));
                }
            }
        }
    }

    fn reattach_severed_inputs(&mut self, diff: &ConfigDiff) {
        let unchanged_transforms = self
            .config
            .transforms()
            .filter(|(key, _)| !diff.transforms.contains(key));
        for (transform_key, transform) in unchanged_transforms {
            let changed_outputs = get_changed_outputs(diff, transform.inputs.clone());
            for output_id in changed_outputs {
                debug!(component = %transform_key, fanout_id = %output_id.component, "Reattaching component input to fanout.");

                let input = self.inputs.get(transform_key).cloned().unwrap();
                let output = self.outputs.get_mut(&output_id).unwrap();
                _ = output.send(ControlMessage::Add(transform_key.clone(), input));
            }
        }

        let unchanged_sinks = self
            .config
            .sinks()
            .filter(|(key, _)| !diff.sinks.contains(key));
        for (sink_key, sink) in unchanged_sinks {
            let changed_outputs = get_changed_outputs(diff, sink.inputs.clone());
            for output_id in changed_outputs {
                debug!(component = %sink_key, fanout_id = %output_id.component, "Reattaching component input to fanout.");

                let input = self.inputs.get(sink_key).cloned().unwrap();
                let output = self.outputs.get_mut(&output_id).unwrap();
                _ = output.send(ControlMessage::Add(sink_key.clone(), input));
            }
        }
    }

    /// Starts any new or changed components in the given configuration diff.
    pub(crate) fn spawn_diff(&mut self, diff: &ConfigDiff, mut new_pieces: TopologyPieces) {
        for key in &diff.sources.to_change {
            debug!(message = "Spawning changed source.", key = %key);
            self.spawn_source(key, &mut new_pieces);
        }

        for key in &diff.sources.to_add {
            debug!(message = "Spawning new source.", key = %key);
            self.spawn_source(key, &mut new_pieces);
        }

        for key in &diff.transforms.to_change {
            debug!(message = "Spawning changed transform.", key = %key);
            self.spawn_transform(key, &mut new_pieces);
        }

        for key in &diff.transforms.to_add {
            debug!(message = "Spawning new transform.", key = %key);
            self.spawn_transform(key, &mut new_pieces);
        }

        for key in &diff.sinks.to_change {
            debug!(message = "Spawning changed sink.", key = %key);
            self.spawn_sink(key, &mut new_pieces);
        }

        for key in &diff.sinks.to_add {
            trace!(message = "Spawning new sink.", key = %key);
            self.spawn_sink(key, &mut new_pieces);
        }
    }

    fn spawn_sink(&mut self, key: &ComponentKey, new_pieces: &mut builder::TopologyPieces) {
        let task = new_pieces.tasks.remove(key).unwrap();
        let span = error_span!(
            "sink",
            component_kind = "sink",
            component_id = %task.id(),
            component_type = %task.typetag(),
        );

        let task_span = span.or_current();
        #[cfg(feature = "allocation-tracing")]
        if crate::internal_telemetry::allocations::is_allocation_tracing_enabled() {
            let group_id = crate::internal_telemetry::allocations::acquire_allocation_group_id(
                task.id().to_string(),
                "sink".to_string(),
                task.typetag().to_string(),
            );
            debug!(
                component_kind = "sink",
                component_type = task.typetag(),
                component_id = task.id(),
                group_id = group_id.as_raw().to_string(),
                "Registered new allocation group."
            );
            group_id.attach_to_span(&task_span);
        }

        let task_name = format!(">> {} ({})", task.typetag(), task.id());
        let task = {
            let key = key.clone();
            handle_errors(task, self.abort_tx.clone(), |error| {
                ShutdownError::SinkAborted { key, error }
            })
        }
        .instrument(task_span);
        let spawned = spawn_named(task, task_name.as_ref());
        if let Some(previous) = self.tasks.insert(key.clone(), spawned) {
            drop(previous); // detach and forget
        }
    }

    fn spawn_transform(&mut self, key: &ComponentKey, new_pieces: &mut builder::TopologyPieces) {
        let task = new_pieces.tasks.remove(key).unwrap();
        let span = error_span!(
            "transform",
            component_kind = "transform",
            component_id = %task.id(),
            component_type = %task.typetag(),
        );

        let task_span = span.or_current();
        #[cfg(feature = "allocation-tracing")]
        if crate::internal_telemetry::allocations::is_allocation_tracing_enabled() {
            let group_id = crate::internal_telemetry::allocations::acquire_allocation_group_id(
                task.id().to_string(),
                "transform".to_string(),
                task.typetag().to_string(),
            );
            debug!(
                component_kind = "transform",
                component_type = task.typetag(),
                component_id = task.id(),
                group_id = group_id.as_raw().to_string(),
                "Registered new allocation group."
            );
            group_id.attach_to_span(&task_span);
        }

        let task_name = format!(">> {} ({}) >>", task.typetag(), task.id());
        let task = {
            let key = key.clone();
            handle_errors(task, self.abort_tx.clone(), |error| {
                ShutdownError::TransformAborted { key, error }
            })
        }
        .instrument(task_span);
        let spawned = spawn_named(task, task_name.as_ref());
        if let Some(previous) = self.tasks.insert(key.clone(), spawned) {
            drop(previous); // detach and forget
        }
    }

    fn spawn_source(&mut self, key: &ComponentKey, new_pieces: &mut builder::TopologyPieces) {
        let task = new_pieces.tasks.remove(key).unwrap();
        let span = error_span!(
            "source",
            component_kind = "source",
            component_id = %task.id(),
            component_type = %task.typetag(),
        );

        let task_span = span.or_current();
        #[cfg(feature = "allocation-tracing")]
        if crate::internal_telemetry::allocations::is_allocation_tracing_enabled() {
            let group_id = crate::internal_telemetry::allocations::acquire_allocation_group_id(
                task.id().to_string(),
                "source".to_string(),
                task.typetag().to_string(),
            );

            debug!(
                component_kind = "source",
                component_type = task.typetag(),
                component_id = task.id(),
                group_id = group_id.as_raw().to_string(),
                "Registered new allocation group."
            );
            group_id.attach_to_span(&task_span);
        }

        let task_name = format!("{} ({}) >>", task.typetag(), task.id());
        let task = {
            let key = key.clone();
            handle_errors(task, self.abort_tx.clone(), |error| {
                ShutdownError::SourceAborted { key, error }
            })
        }
        .instrument(task_span.clone());
        let spawned = spawn_named(task, task_name.as_ref());
        if let Some(previous) = self.tasks.insert(key.clone(), spawned) {
            drop(previous); // detach and forget
        }

        self.shutdown_coordinator
            .takeover_source(key, &mut new_pieces.shutdown_coordinator);

        // Now spawn the actual source task.
        let source_task = new_pieces.source_tasks.remove(key).unwrap();
        let source_task = {
            let key = key.clone();
            handle_errors(source_task, self.abort_tx.clone(), |error| {
                ShutdownError::SourceAborted { key, error }
            })
        }
        .instrument(task_span);
        self.source_tasks
            .insert(key.clone(), spawn_named(source_task, task_name.as_ref()));
    }

    pub async fn start_init_validated(
        config: Config,
        extra_context: ExtraContext,
    ) -> Option<(Self, ShutdownErrorReceiver)> {
        let diff = ConfigDiff::initial(&config);
        let pieces =
            TopologyPieces::build_or_log_errors(&config, &diff, HashMap::new(), extra_context)
                .await?;
        Self::start_validated(config, diff, pieces).await
    }

    pub async fn start_validated(
        config: Config,
        diff: ConfigDiff,
        mut pieces: TopologyPieces,
    ) -> Option<(Self, ShutdownErrorReceiver)> {
        let (abort_tx, abort_rx) = mpsc::unbounded_channel();

        let expire_metrics = match (
            config.global.expire_metrics,
            config.global.expire_metrics_secs,
        ) {
            (Some(e), None) => {
                warn!(
                "DEPRECATED: `expire_metrics` setting is deprecated and will be removed in a future version. Use `expire_metrics_secs` instead."
            );
                if e < Duration::from_secs(0) {
                    None
                } else {
                    Some(e.as_secs_f64())
                }
            }
            (Some(_), Some(_)) => {
                error!("Cannot set both `expire_metrics` and `expire_metrics_secs`.");
                return None;
            }
            (None, Some(e)) => {
                if e < 0f64 {
                    None
                } else {
                    Some(e)
                }
            }
            (None, None) => Some(300f64),
        };

        if let Err(error) = crate::metrics::Controller::get()
            .expect("Metrics must be initialized")
            .set_expiry(expire_metrics)
        {
            error!(message = "Invalid metrics expiry.", %error);
            return None;
        }

        let mut running_topology = Self::new(config, abort_tx);

        if !running_topology
            .run_healthchecks(&diff, &mut pieces, running_topology.config.healthchecks)
            .await
        {
            return None;
        }
        running_topology.connect_diff(&diff, &mut pieces).await;
        running_topology.spawn_diff(&diff, pieces);

        Some((running_topology, abort_rx))
    }
}

fn get_changed_outputs(diff: &ConfigDiff, output_ids: Inputs<OutputId>) -> Vec<OutputId> {
    let mut changed_outputs = Vec::new();

    for source_key in &diff.sources.to_change {
        changed_outputs.extend(
            output_ids
                .iter()
                .filter(|id| &id.component == source_key)
                .cloned(),
        );
    }

    for transform_key in &diff.transforms.to_change {
        changed_outputs.extend(
            output_ids
                .iter()
                .filter(|id| &id.component == transform_key)
                .cloned(),
        );
    }

    changed_outputs
}