1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use std::{
sync::{
atomic::{AtomicU64, Ordering},
Arc,
},
time::Duration,
};
use tokio::time::interval;
use tracing::{Instrument, Span};
use vector_common::internal_event::emit;
use crate::{
internal_events::{BufferCreated, BufferEventsDropped, BufferEventsReceived, BufferEventsSent},
spawn_named,
};
/// Snapshot of category metrics.
struct CategorySnapshot {
event_count: u64,
event_byte_size: u64,
}
impl CategorySnapshot {
/// Returns `true` if any of the values are non-zero.
fn has_updates(&self) -> bool {
self.event_count > 0 || self.event_byte_size > 0
}
}
/// Per-category metrics.
///
/// This tracks the number of events, and their size in the buffer, that a given category has interacted with. A
/// category in this case could be something like the receive or send categories i.e. being written into the buffer, and
/// then read out of the buffer. Overall, it's a simple grouping mechanism because we often want to track the change in
/// both number of events, and their size as measured by the buffer.
#[derive(Debug, Default)]
struct CategoryMetrics {
event_count: AtomicU64,
event_byte_size: AtomicU64,
}
impl CategoryMetrics {
/// Increments the event count and byte size by the given amounts.
fn increment(&self, event_count: u64, event_byte_size: u64) {
self.event_count.fetch_add(event_count, Ordering::Relaxed);
self.event_byte_size
.fetch_add(event_byte_size, Ordering::Relaxed);
}
/// Sets the event count and event byte size to the given amount.
///
/// Most updates are meant to be incremental, so this should be used sparingly.
fn set(&self, event_count: u64, event_byte_size: u64) {
self.event_count.store(event_count, Ordering::Release);
self.event_byte_size
.store(event_byte_size, Ordering::Release);
}
/// Gets a snapshot of the event count and event byte size.
fn get(&self) -> CategorySnapshot {
CategorySnapshot {
event_count: self.event_count.load(Ordering::Acquire),
event_byte_size: self.event_byte_size.load(Ordering::Acquire),
}
}
/// Gets a snapshot of the event count and event byte size by "consuming" the values.
///
/// This essentially resets both metrics while capturing their value at the time they were reset. This is useful if
/// you want to only emit updates when values have been incremented/set to a non-zero value, as by consuming each
/// time, you can tell if anything has changed since the last call to `consume` without needing internal state to
/// track the last seen values.
fn consume(&self) -> CategorySnapshot {
CategorySnapshot {
event_count: self.event_count.swap(0, Ordering::AcqRel),
event_byte_size: self.event_byte_size.swap(0, Ordering::AcqRel),
}
}
}
/// Handle to buffer usage metrics for a specific buffer stage.
#[derive(Clone, Debug)]
pub struct BufferUsageHandle {
state: Arc<BufferUsageData>,
}
impl BufferUsageHandle {
/// Creates a no-op [`BufferUsageHandle`] handle.
///
/// No usage data is written or stored.
pub(crate) fn noop() -> Self {
BufferUsageHandle {
state: Arc::new(BufferUsageData::new(0)),
}
}
/// Gets a snapshot of the buffer usage data, representing an instantaneous view of the different values.
pub fn snapshot(&self) -> BufferUsageSnapshot {
self.state.snapshot()
}
/// Sets the limits for this buffer component.
///
/// Limits are exposed as gauges to provide stable values when superimposed on dashboards/graphs with the "actual"
/// usage amounts.
pub fn set_buffer_limits(&self, max_bytes: Option<u64>, max_events: Option<usize>) {
let max_events = max_events
.and_then(|n| u64::try_from(n).ok().or(Some(u64::MAX)))
.unwrap_or(0);
let max_bytes = max_bytes.unwrap_or(0);
self.state.max_size.set(max_events, max_bytes);
}
/// Increments the number of events (and their total size) received by this buffer component.
///
/// This represents the events being sent into the buffer.
pub fn increment_received_event_count_and_byte_size(&self, count: u64, byte_size: u64) {
self.state.received.increment(count, byte_size);
}
/// Increments the number of events (and their total size) sent by this buffer component.
///
/// This represents the events being read out of the buffer.
pub fn increment_sent_event_count_and_byte_size(&self, count: u64, byte_size: u64) {
self.state.sent.increment(count, byte_size);
}
/// Increment the number of dropped events (and their total size) for this buffer component.
pub fn increment_dropped_event_count_and_byte_size(
&self,
count: u64,
byte_size: u64,
intentional: bool,
) {
if intentional {
self.state.dropped_intentional.increment(count, byte_size);
} else {
self.state.dropped.increment(count, byte_size);
}
}
}
#[derive(Debug, Default)]
struct BufferUsageData {
idx: usize,
received: CategoryMetrics,
sent: CategoryMetrics,
dropped: CategoryMetrics,
dropped_intentional: CategoryMetrics,
max_size: CategoryMetrics,
}
impl BufferUsageData {
fn new(idx: usize) -> Self {
Self {
idx,
..Default::default()
}
}
fn snapshot(&self) -> BufferUsageSnapshot {
let received = self.received.get();
let sent = self.sent.get();
let dropped = self.dropped.get();
let dropped_intentional = self.dropped_intentional.get();
let max_size = self.max_size.get();
BufferUsageSnapshot {
received_event_count: received.event_count,
received_byte_size: received.event_byte_size,
sent_event_count: sent.event_count,
sent_byte_size: sent.event_byte_size,
dropped_event_count: dropped.event_count,
dropped_event_byte_size: dropped.event_byte_size,
dropped_event_count_intentional: dropped_intentional.event_count,
dropped_event_byte_size_intentional: dropped_intentional.event_byte_size,
max_size_bytes: max_size.event_byte_size,
max_size_events: max_size
.event_count
.try_into()
.expect("should never be bigger than `usize`"),
}
}
}
/// Snapshot of buffer usage metrics.
#[derive(Debug)]
pub struct BufferUsageSnapshot {
pub received_event_count: u64,
pub received_byte_size: u64,
pub sent_event_count: u64,
pub sent_byte_size: u64,
pub dropped_event_count: u64,
pub dropped_event_byte_size: u64,
pub dropped_event_count_intentional: u64,
pub dropped_event_byte_size_intentional: u64,
pub max_size_bytes: u64,
pub max_size_events: usize,
}
/// Builder for tracking buffer usage metrics.
///
/// While building a buffer topology, `BufferUsage` can be utilized to create metrics storage for each individual buffer
/// stage. A handle is provided to allow each buffer stage to update their metrics from one or multiple locations, as
/// needed. Reporting of the metrics is handled centrally to keep buffer stages simpler and ensure consistent reporting.
pub struct BufferUsage {
span: Span,
stages: Vec<Arc<BufferUsageData>>,
}
impl BufferUsage {
/// Creates an instance of [`BufferUsage`] attached to the given span.
///
/// As buffers can have multiple stages, callers have the ability to register each stage via [`add_stage`].
pub fn from_span(span: Span) -> BufferUsage {
Self {
span,
stages: Vec::new(),
}
}
/// Adds a new stage to track usage for.
///
/// A [`BufferUsageHandle`] is returned that the caller can use to actually update the usage metrics with. This
/// handle will only update the usage metrics for the particular stage it was added for.
pub fn add_stage(&mut self, idx: usize) -> BufferUsageHandle {
let data = Arc::new(BufferUsageData::new(idx));
let handle = BufferUsageHandle {
state: Arc::clone(&data),
};
self.stages.push(data);
handle
}
/// Installs a reporter for the configured stages which periodically reports buffer usage metrics.
///
/// Metrics are reported every 2 seconds.
///
/// The `buffer_id` should be a unique name -- ideally the `component_id` of the sink using this buffer -- but is
/// not used for anything other than reporting, and so has no _requirement_ to be unique.
pub fn install(self, buffer_id: &str) {
let span = self.span;
let stages = self.stages;
let task = async move {
let mut interval = interval(Duration::from_secs(2));
loop {
interval.tick().await;
for stage in &stages {
let max_size = stage.max_size.get();
emit(BufferCreated {
idx: stage.idx,
max_size_bytes: max_size.event_byte_size,
max_size_events: max_size
.event_count
.try_into()
.expect("should never be bigger than `usize`"),
});
let received = stage.received.consume();
if received.has_updates() {
emit(BufferEventsReceived {
idx: stage.idx,
count: received.event_count,
byte_size: received.event_byte_size,
});
}
let sent = stage.sent.consume();
if sent.has_updates() {
emit(BufferEventsSent {
idx: stage.idx,
count: sent.event_count,
byte_size: sent.event_byte_size,
});
}
let dropped = stage.dropped.consume();
if dropped.has_updates() {
emit(BufferEventsDropped {
idx: stage.idx,
intentional: false,
reason: "corrupted_events",
count: dropped.event_count,
byte_size: dropped.event_byte_size,
});
}
let dropped_intentional = stage.dropped_intentional.consume();
if dropped_intentional.has_updates() {
emit(BufferEventsDropped {
idx: stage.idx,
intentional: true,
reason: "drop_newest",
count: dropped_intentional.event_count,
byte_size: dropped_intentional.event_byte_size,
});
}
}
}
};
let task_name = format!("buffer usage reporter ({buffer_id})");
spawn_named(task.instrument(span.or_current()), task_name.as_str());
}
}