1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
use std::{
fmt,
num::{NonZeroU64, NonZeroUsize},
path::{Path, PathBuf},
slice,
};
use serde::{de, Deserialize, Deserializer, Serialize};
use snafu::{ResultExt, Snafu};
use tracing::Span;
use vector_common::{config::ComponentKey, finalization::Finalizable};
use vector_config::configurable_component;
use crate::{
topology::{
builder::{TopologyBuilder, TopologyError},
channel::{BufferReceiver, BufferSender},
},
variants::{DiskV2Buffer, MemoryBuffer},
Bufferable, WhenFull,
};
#[derive(Debug, Snafu)]
pub enum BufferBuildError {
#[snafu(display("the configured buffer type requires `data_dir` be specified"))]
RequiresDataDir,
#[snafu(display("error occurred when building buffer: {}", source))]
FailedToBuildTopology { source: TopologyError },
#[snafu(display("`max_events` must be greater than zero"))]
InvalidMaxEvents,
}
#[derive(Deserialize, Serialize)]
enum BufferTypeKind {
#[serde(rename = "memory")]
Memory,
#[serde(rename = "disk")]
DiskV2,
}
const ALL_FIELDS: [&str; 4] = ["type", "max_events", "max_size", "when_full"];
struct BufferTypeVisitor;
impl BufferTypeVisitor {
fn visit_map_impl<'de, A>(mut map: A) -> Result<BufferType, A::Error>
where
A: de::MapAccess<'de>,
{
let mut kind: Option<BufferTypeKind> = None;
let mut max_events: Option<NonZeroUsize> = None;
let mut max_size: Option<NonZeroU64> = None;
let mut when_full: Option<WhenFull> = None;
while let Some(key) = map.next_key::<String>()? {
match key.as_str() {
"type" => {
if kind.is_some() {
return Err(de::Error::duplicate_field("type"));
}
kind = Some(map.next_value()?);
}
"max_events" => {
if max_events.is_some() {
return Err(de::Error::duplicate_field("max_events"));
}
max_events = Some(map.next_value()?);
}
"max_size" => {
if max_size.is_some() {
return Err(de::Error::duplicate_field("max_size"));
}
max_size = Some(map.next_value()?);
}
"when_full" => {
if when_full.is_some() {
return Err(de::Error::duplicate_field("when_full"));
}
when_full = Some(map.next_value()?);
}
other => {
return Err(de::Error::unknown_field(other, &ALL_FIELDS));
}
}
}
let kind = kind.unwrap_or(BufferTypeKind::Memory);
let when_full = when_full.unwrap_or_default();
match kind {
BufferTypeKind::Memory => {
if max_size.is_some() {
return Err(de::Error::unknown_field(
"max_size",
&["type", "max_events", "when_full"],
));
}
Ok(BufferType::Memory {
max_events: max_events.unwrap_or_else(memory_buffer_default_max_events),
when_full,
})
}
BufferTypeKind::DiskV2 => {
if max_events.is_some() {
return Err(de::Error::unknown_field(
"max_events",
&["type", "max_size", "when_full"],
));
}
Ok(BufferType::DiskV2 {
max_size: max_size.ok_or_else(|| de::Error::missing_field("max_size"))?,
when_full,
})
}
}
}
}
impl<'de> de::Visitor<'de> for BufferTypeVisitor {
type Value = BufferType;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("enum BufferType")
}
fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
where
A: de::MapAccess<'de>,
{
BufferTypeVisitor::visit_map_impl(map)
}
}
impl<'de> Deserialize<'de> for BufferType {
fn deserialize<D>(deserializer: D) -> Result<BufferType, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_map(BufferTypeVisitor)
}
}
pub const fn memory_buffer_default_max_events() -> NonZeroUsize {
unsafe { NonZeroUsize::new_unchecked(500) }
}
/// Disk usage configuration for disk-backed buffers.
#[derive(Debug)]
pub struct DiskUsage {
id: ComponentKey,
data_dir: PathBuf,
max_size: NonZeroU64,
}
impl DiskUsage {
/// Creates a new `DiskUsage` with the given usage configuration.
pub fn new(id: ComponentKey, data_dir: PathBuf, max_size: NonZeroU64) -> Self {
Self {
id,
data_dir,
max_size,
}
}
/// Gets the component key for the component this buffer is attached to.
pub fn id(&self) -> &ComponentKey {
&self.id
}
/// Gets the maximum size, in bytes, that this buffer can consume on disk.
pub fn max_size(&self) -> u64 {
self.max_size.get()
}
/// Gets the data directory path that this buffer will store its files on disk.
pub fn data_dir(&self) -> &Path {
self.data_dir.as_path()
}
}
/// A specific type of buffer stage.
#[configurable_component(no_deser)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[serde(rename_all = "snake_case", tag = "type")]
#[configurable(metadata(docs::enum_tag_description = "The type of buffer to use."))]
pub enum BufferType {
/// A buffer stage backed by an in-memory channel provided by `tokio`.
///
/// This is more performant, but less durable. Data will be lost if Vector is restarted
/// forcefully or crashes.
#[configurable(title = "Events are buffered in memory.")]
#[serde(rename = "memory")]
Memory {
/// The maximum number of events allowed in the buffer.
#[serde(default = "memory_buffer_default_max_events")]
max_events: NonZeroUsize,
#[configurable(derived)]
#[serde(default)]
when_full: WhenFull,
},
/// A buffer stage backed by disk.
///
/// This is less performant, but more durable. Data that has been synchronized to disk will not
/// be lost if Vector is restarted forcefully or crashes.
///
/// Data is synchronized to disk every 500ms.
#[configurable(title = "Events are buffered on disk.")]
#[serde(rename = "disk")]
DiskV2 {
/// The maximum size of the buffer on disk.
///
/// Must be at least ~256 megabytes (268435488 bytes).
#[configurable(
validation(range(min = 268435488)),
metadata(docs::type_unit = "bytes")
)]
max_size: NonZeroU64,
#[configurable(derived)]
#[serde(default)]
when_full: WhenFull,
},
}
impl BufferType {
/// Gets the metadata around disk usage by the buffer, if supported.
///
/// For buffer types that write to disk, `Some(value)` is returned with their usage metadata,
/// such as maximum size and data directory path.
///
/// Otherwise, `None` is returned.
pub fn disk_usage(
&self,
global_data_dir: Option<PathBuf>,
id: &ComponentKey,
) -> Option<DiskUsage> {
// All disk-backed buffers require the global data directory to be specified, and
// non-disk-backed buffers do not require it to be set... so if it's not set here, we ignore
// it because either:
// - it's a non-disk-backed buffer, in which case we can just ignore, or
// - this method is being called at a point before we actually check that a global data
// directory is specified because we have a disk buffer present
//
// Since we're not able to emit/surface errors about a lack of a global data directory from
// where this method is called, we simply return `None` to let it reach the code that _does_
// emit/surface those errors... and once those errors are fixed, this code can return valid
// disk usage information, which will then be validated and emit any errors for _that_
// aspect.
match global_data_dir {
None => None,
Some(global_data_dir) => match self {
Self::Memory { .. } => None,
Self::DiskV2 { max_size, .. } => {
let data_dir = crate::variants::disk_v2::get_disk_v2_data_dir_path(
&global_data_dir,
id.id(),
);
Some(DiskUsage::new(id.clone(), data_dir, *max_size))
}
},
}
}
/// Adds this buffer type as a stage to an existing [`TopologyBuilder`].
///
/// # Errors
///
/// If a required parameter is missing, or if there is an error building the topology itself, an
/// error variant will be returned describing the error
pub fn add_to_builder<T>(
&self,
builder: &mut TopologyBuilder<T>,
data_dir: Option<PathBuf>,
id: String,
) -> Result<(), BufferBuildError>
where
T: Bufferable + Clone + Finalizable,
{
match *self {
BufferType::Memory {
when_full,
max_events,
} => {
builder.stage(MemoryBuffer::new(max_events), when_full);
}
BufferType::DiskV2 {
when_full,
max_size,
} => {
let data_dir = data_dir.ok_or(BufferBuildError::RequiresDataDir)?;
builder.stage(DiskV2Buffer::new(id, data_dir, max_size), when_full);
}
};
Ok(())
}
}
/// Buffer configuration.
///
/// Buffers are compromised of stages(*) that form a buffer _topology_, with input items being
/// subject to configurable behavior when each stage reaches configured limits. Buffers are
/// configured for sinks, where backpressure from the sink can be handled by the buffer. This
/// allows absorbing temporary load, or potentially adding write-ahead-log behavior to a sink to
/// increase the durability of a given Vector pipeline.
///
/// While we use the term "buffer topology" here, a buffer topology is referred to by the more
/// common "buffer" or "buffers" shorthand. This is related to buffers originally being a single
/// component, where you could only choose which buffer type to use. As we expand buffer
/// functionality to allow chaining buffers together, you'll see "buffer topology" used in internal
/// documentation to correctly reflect the internal structure.
///
// TODO: We need to limit chained buffers to only allowing a single copy of each buffer type to be
// defined, otherwise, for example, two instances of the same disk buffer type in a single chained
// buffer topology would try to both open the same buffer files on disk, which wouldn't work or
// would go horribly wrong.
#[configurable_component]
#[derive(Clone, Debug, PartialEq, Eq)]
#[serde(untagged)]
#[configurable(
title = "Configures the buffering behavior for this sink.",
description = r#"More information about the individual buffer types, and buffer behavior, can be found in the
[Buffering Model][buffering_model] section.
[buffering_model]: /docs/about/under-the-hood/architecture/buffering-model/"#
)]
pub enum BufferConfig {
/// A single stage buffer topology.
Single(BufferType),
/// A chained buffer topology.
Chained(Vec<BufferType>),
}
impl Default for BufferConfig {
fn default() -> Self {
Self::Single(BufferType::Memory {
max_events: memory_buffer_default_max_events(),
when_full: WhenFull::default(),
})
}
}
impl BufferConfig {
/// Gets all of the configured stages for this buffer.
pub fn stages(&self) -> &[BufferType] {
match self {
Self::Single(stage) => slice::from_ref(stage),
Self::Chained(stages) => stages.as_slice(),
}
}
/// Builds the buffer components represented by this configuration.
///
/// The caller gets back a `Sink` and `Stream` implementation that represent a way to push items
/// into the buffer, as well as pop items out of the buffer, respectively.
///
/// # Errors
///
/// If the buffer is configured with anything other than a single stage, an error variant will
/// be thrown.
///
/// If a disk buffer stage is configured and the data directory provided is `None`, an error
/// variant will be thrown.
#[allow(clippy::needless_pass_by_value)]
pub async fn build<T>(
&self,
data_dir: Option<PathBuf>,
buffer_id: String,
span: Span,
) -> Result<(BufferSender<T>, BufferReceiver<T>), BufferBuildError>
where
T: Bufferable + Clone + Finalizable,
{
let mut builder = TopologyBuilder::default();
for stage in self.stages() {
stage.add_to_builder(&mut builder, data_dir.clone(), buffer_id.clone())?;
}
builder
.build(buffer_id, span)
.await
.context(FailedToBuildTopologySnafu)
}
}
#[cfg(test)]
mod test {
use std::num::{NonZeroU64, NonZeroUsize};
use crate::{BufferConfig, BufferType, WhenFull};
fn check_single_stage(source: &str, expected: BufferType) {
let config: BufferConfig = serde_yaml::from_str(source).unwrap();
assert_eq!(config.stages().len(), 1);
let actual = config.stages().first().unwrap();
assert_eq!(actual, &expected);
}
fn check_multiple_stages(source: &str, expected_stages: &[BufferType]) {
let config: BufferConfig = serde_yaml::from_str(source).unwrap();
assert_eq!(config.stages().len(), expected_stages.len());
for (actual, expected) in config.stages().iter().zip(expected_stages) {
assert_eq!(actual, expected);
}
}
const BUFFER_CONFIG_NO_MATCH_ERR: &str =
"data did not match any variant of untagged enum BufferConfig";
#[test]
fn parse_empty() {
let source = "";
let error = serde_yaml::from_str::<BufferConfig>(source).unwrap_err();
assert_eq!(error.to_string(), BUFFER_CONFIG_NO_MATCH_ERR);
}
#[test]
fn parse_only_invalid_keys() {
let source = "foo: 314";
let error = serde_yaml::from_str::<BufferConfig>(source).unwrap_err();
assert_eq!(error.to_string(), BUFFER_CONFIG_NO_MATCH_ERR);
}
#[test]
fn parse_partial_invalid_keys() {
let source = r"max_size: 100
max_events: 42
";
let error = serde_yaml::from_str::<BufferConfig>(source).unwrap_err();
assert_eq!(error.to_string(), BUFFER_CONFIG_NO_MATCH_ERR);
}
#[test]
fn parse_without_type_tag() {
check_single_stage(
r"
max_events: 100
",
BufferType::Memory {
max_events: NonZeroUsize::new(100).unwrap(),
when_full: WhenFull::Block,
},
);
}
#[test]
fn parse_multiple_stages() {
check_multiple_stages(
r"
- max_events: 42
- max_events: 100
when_full: drop_newest
",
&[
BufferType::Memory {
max_events: NonZeroUsize::new(42).unwrap(),
when_full: WhenFull::Block,
},
BufferType::Memory {
max_events: NonZeroUsize::new(100).unwrap(),
when_full: WhenFull::DropNewest,
},
],
);
}
#[test]
fn ensure_field_defaults_for_all_types() {
check_single_stage(
r"
type: memory
",
BufferType::Memory {
max_events: NonZeroUsize::new(500).unwrap(),
when_full: WhenFull::Block,
},
);
check_single_stage(
r"
type: memory
max_events: 100
",
BufferType::Memory {
max_events: NonZeroUsize::new(100).unwrap(),
when_full: WhenFull::Block,
},
);
check_single_stage(
r"
type: memory
when_full: drop_newest
",
BufferType::Memory {
max_events: NonZeroUsize::new(500).unwrap(),
when_full: WhenFull::DropNewest,
},
);
check_single_stage(
r"
type: memory
when_full: overflow
",
BufferType::Memory {
max_events: NonZeroUsize::new(500).unwrap(),
when_full: WhenFull::Overflow,
},
);
check_single_stage(
r"
type: disk
max_size: 1024
",
BufferType::DiskV2 {
max_size: NonZeroU64::new(1024).unwrap(),
when_full: WhenFull::Block,
},
);
}
}