vector_buffers/topology/channel/
limited_queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
use std::{
    cmp, fmt,
    pin::Pin,
    sync::{
        atomic::{AtomicUsize, Ordering},
        Arc,
    },
};

use async_stream::stream;
use crossbeam_queue::ArrayQueue;
use futures::Stream;
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};

use crate::InMemoryBufferable;

/// Error returned by `LimitedSender::send` when the receiver has disconnected.
#[derive(Debug, PartialEq, Eq)]
pub struct SendError<T>(pub T);

impl<T> fmt::Display for SendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "receiver disconnected")
    }
}

impl<T: fmt::Debug> std::error::Error for SendError<T> {}

/// Error returned by `LimitedSender::try_send`.
#[derive(Debug, PartialEq, Eq)]
pub enum TrySendError<T> {
    InsufficientCapacity(T),
    Disconnected(T),
}

impl<T> TrySendError<T> {
    pub fn into_inner(self) -> T {
        match self {
            Self::InsufficientCapacity(item) | Self::Disconnected(item) => item,
        }
    }
}

impl<T> fmt::Display for TrySendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::InsufficientCapacity(_) => {
                write!(fmt, "channel lacks sufficient capacity for send")
            }
            Self::Disconnected(_) => write!(fmt, "receiver disconnected"),
        }
    }
}

impl<T: fmt::Debug> std::error::Error for TrySendError<T> {}

#[derive(Debug)]
struct Inner<T> {
    data: Arc<ArrayQueue<(OwnedSemaphorePermit, T)>>,
    limit: usize,
    limiter: Arc<Semaphore>,
    read_waker: Arc<Notify>,
}

impl<T> Clone for Inner<T> {
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            limit: self.limit,
            limiter: self.limiter.clone(),
            read_waker: self.read_waker.clone(),
        }
    }
}

#[derive(Debug)]
pub struct LimitedSender<T> {
    inner: Inner<T>,
    sender_count: Arc<AtomicUsize>,
}

impl<T: InMemoryBufferable> LimitedSender<T> {
    #[allow(clippy::cast_possible_truncation)]
    fn get_required_permits_for_item(&self, item: &T) -> u32 {
        // We have to limit the number of permits we ask for to the overall limit since we're always
        // willing to store more items than the limit if the queue is entirely empty, because
        // otherwise we might deadlock ourselves by not being able to send a single item.
        cmp::min(self.inner.limit, item.event_count()) as u32
    }

    /// Gets the number of items that this channel could accept.
    pub fn available_capacity(&self) -> usize {
        self.inner.limiter.available_permits()
    }

    /// Sends an item into the channel.
    ///
    /// # Errors
    ///
    /// If the receiver has disconnected (does not exist anymore), then `Err(SendError)` be returned
    /// with the given `item`.
    pub async fn send(&mut self, item: T) -> Result<(), SendError<T>> {
        // Calculate how many permits we need, and wait until we can acquire all of them.
        let permits_required = self.get_required_permits_for_item(&item);
        let Ok(permits) = self
            .inner
            .limiter
            .clone()
            .acquire_many_owned(permits_required)
            .await
        else {
            return Err(SendError(item));
        };

        self.inner
            .data
            .push((permits, item))
            .unwrap_or_else(|_| unreachable!("acquired permits but channel reported being full"));
        self.inner.read_waker.notify_one();

        trace!("Sent item.");

        Ok(())
    }

    /// Attempts to send an item into the channel.
    ///
    /// # Errors
    ///
    /// If the receiver has disconnected (does not exist anymore), then
    /// `Err(TrySendError::Disconnected)` be returned with the given `item`. If the channel has
    /// insufficient capacity for the item, then `Err(TrySendError::InsufficientCapacity)` will be
    /// returned with the given `item`.
    ///
    /// # Panics
    ///
    /// Will panic if adding ack amount overflows.
    pub fn try_send(&mut self, item: T) -> Result<(), TrySendError<T>> {
        // Calculate how many permits we need, and try to acquire them all without waiting.
        let permits_required = self.get_required_permits_for_item(&item);
        let permits = match self
            .inner
            .limiter
            .clone()
            .try_acquire_many_owned(permits_required)
        {
            Ok(permits) => permits,
            Err(ae) => {
                return match ae {
                    TryAcquireError::NoPermits => Err(TrySendError::InsufficientCapacity(item)),
                    TryAcquireError::Closed => Err(TrySendError::Disconnected(item)),
                }
            }
        };

        self.inner
            .data
            .push((permits, item))
            .unwrap_or_else(|_| unreachable!("acquired permits but channel reported being full"));
        self.inner.read_waker.notify_one();

        trace!("Attempt to send item succeeded.");

        Ok(())
    }
}

impl<T> Clone for LimitedSender<T> {
    fn clone(&self) -> Self {
        self.sender_count.fetch_add(1, Ordering::SeqCst);

        Self {
            inner: self.inner.clone(),
            sender_count: Arc::clone(&self.sender_count),
        }
    }
}

impl<T> Drop for LimitedSender<T> {
    fn drop(&mut self) {
        // If we're the last sender to drop, close the semaphore on our way out the door.
        if self.sender_count.fetch_sub(1, Ordering::SeqCst) == 1 {
            self.inner.limiter.close();
            self.inner.read_waker.notify_one();
        }
    }
}

#[derive(Debug)]
pub struct LimitedReceiver<T> {
    inner: Inner<T>,
}

impl<T: Send + 'static> LimitedReceiver<T> {
    /// Gets the number of items that this channel could accept.
    pub fn available_capacity(&self) -> usize {
        self.inner.limiter.available_permits()
    }

    pub async fn next(&mut self) -> Option<T> {
        loop {
            if let Some((_permit, item)) = self.inner.data.pop() {
                return Some(item);
            }

            // There wasn't an item for us to pop, so see if the channel is actually closed.  If so,
            // then it's time for us to close up shop as well.
            if self.inner.limiter.is_closed() {
                return None;
            }

            // We're not closed, so we need to wait for a writer to tell us they made some
            // progress.  This might end up being a spurious wakeup since `Notify` will
            // store a wake-up if there are no waiters, but oh well.
            self.inner.read_waker.notified().await;
        }
    }

    pub fn into_stream(self) -> Pin<Box<dyn Stream<Item = T> + Send>> {
        let mut receiver = self;
        Box::pin(stream! {
            while let Some(item) = receiver.next().await {
                yield item;
            }
        })
    }
}

impl<T> Drop for LimitedReceiver<T> {
    fn drop(&mut self) {
        // Notify senders that the channel is now closed by closing the semaphore.  Any pending
        // acquisitions will be awoken and notified that the semaphore is closed, and further new
        // sends will immediately see the semaphore is closed.
        self.inner.limiter.close();
    }
}

pub fn limited<T>(limit: usize) -> (LimitedSender<T>, LimitedReceiver<T>) {
    let inner = Inner {
        data: Arc::new(ArrayQueue::new(limit)),
        limit,
        limiter: Arc::new(Semaphore::new(limit)),
        read_waker: Arc::new(Notify::new()),
    };

    let sender = LimitedSender {
        inner: inner.clone(),
        sender_count: Arc::new(AtomicUsize::new(1)),
    };
    let receiver = LimitedReceiver { inner };

    (sender, receiver)
}

#[cfg(test)]
mod tests {
    use tokio_test::{assert_pending, assert_ready, task::spawn};

    use super::limited;
    use crate::{
        test::MultiEventRecord, topology::channel::limited_queue::SendError,
        topology::test_util::Sample,
    };

    #[tokio::test]
    async fn send_receive() {
        let (mut tx, mut rx) = limited(2);

        assert_eq!(2, tx.available_capacity());

        let msg = Sample(42);

        // Create our send and receive futures.
        let mut send = spawn(async { tx.send(msg).await });

        let mut recv = spawn(async { rx.next().await });

        // Nobody should be woken up.
        assert!(!send.is_woken());
        assert!(!recv.is_woken());

        // Try polling our receive, which should be pending because we haven't anything yet.
        assert_pending!(recv.poll());

        // We should immediately be able to complete a send as there is available capacity.
        assert_eq!(Ok(()), assert_ready!(send.poll()));

        // Now our receive should have been woken up, and should immediately be ready.
        assert!(recv.is_woken());
        assert_eq!(Some(msg), assert_ready!(recv.poll()));
    }

    #[test]
    fn sender_waits_for_more_capacity_when_none_available() {
        let (mut tx, mut rx) = limited(1);

        assert_eq!(1, tx.available_capacity());

        let msg1 = Sample(42);
        let msg2 = Sample(43);

        // Create our send and receive futures.
        let mut send1 = spawn(async { tx.send(msg1).await });

        let mut recv1 = spawn(async { rx.next().await });

        // Nobody should be woken up.
        assert!(!send1.is_woken());
        assert!(!recv1.is_woken());

        // Try polling our receive, which should be pending because we haven't anything yet.
        assert_pending!(recv1.poll());

        // We should immediately be able to complete a send as there is available capacity.
        assert_eq!(Ok(()), assert_ready!(send1.poll()));
        drop(send1);

        assert_eq!(0, tx.available_capacity());

        // Now our receive should have been woken up, and should immediately be ready... but we
        // aren't going to read the value just yet.
        assert!(recv1.is_woken());

        // Now trigger a second send, which should block as there's no available capacity.
        let mut send2 = spawn(async { tx.send(msg2).await });

        assert!(!send2.is_woken());
        assert_pending!(send2.poll());

        // Now if we receive the item, our second send should be woken up and be able to send in.
        assert_eq!(Some(msg1), assert_ready!(recv1.poll()));
        drop(recv1);

        // Since the second send was already waiting for permits, the semaphore returns them
        // directly to our waiting send, which should now be woken up and able to complete:
        assert_eq!(0, rx.available_capacity());
        assert!(send2.is_woken());

        let mut recv2 = spawn(async { rx.next().await });
        assert_pending!(recv2.poll());

        assert_eq!(Ok(()), assert_ready!(send2.poll()));
        drop(send2);

        assert_eq!(0, tx.available_capacity());

        // And the final receive to get our second send:
        assert!(recv2.is_woken());
        assert_eq!(Some(msg2), assert_ready!(recv2.poll()));

        assert_eq!(1, tx.available_capacity());
    }

    #[test]
    fn sender_waits_for_more_capacity_when_partial_available() {
        let (mut tx, mut rx) = limited(7);

        assert_eq!(7, tx.available_capacity());

        let msgs1 = vec![
            MultiEventRecord::new(1),
            MultiEventRecord::new(2),
            MultiEventRecord::new(3),
        ];
        let msg2 = MultiEventRecord::new(4);

        // Create our send and receive futures.
        let mut small_sends = spawn(async {
            for msg in msgs1.clone() {
                tx.send(msg).await?;
            }

            Ok::<_, SendError<MultiEventRecord>>(())
        });

        let mut recv1 = spawn(async { rx.next().await });

        // Nobody should be woken up.
        assert!(!small_sends.is_woken());
        assert!(!recv1.is_woken());

        // Try polling our receive, which should be pending because we haven't anything yet.
        assert_pending!(recv1.poll());

        // We should immediately be able to complete our three event sends, which we have
        // available capacity for, but will consume all but one of the available slots.
        assert_eq!(Ok(()), assert_ready!(small_sends.poll()));
        drop(small_sends);

        assert_eq!(1, tx.available_capacity());

        // Now our receive should have been woken up, and should immediately be ready, but we won't
        // receive just yet.
        assert!(recv1.is_woken());

        // Now trigger a second send that has four events, and needs to wait for two receives to happen.
        let mut send2 = spawn(tx.send(msg2.clone()));

        assert!(!send2.is_woken());
        assert_pending!(send2.poll());

        // Now if we receive the first item, our second send should be woken up but still not able
        // to send.
        assert_eq!(Some(&msgs1[0]), assert_ready!(recv1.poll()).as_ref());
        drop(recv1);

        // Callers waiting to acquire permits have the permits immediately transfer to them when one
        // (or more) are released, so we expect this to be zero until we send and then read the
        // third item.
        assert_eq!(0, rx.available_capacity());

        // We don't get woken up until all permits have been acquired.
        assert!(!send2.is_woken());

        // Our second read should unlock enough available capacity for the second send once complete.
        let mut recv2 = spawn(async { rx.next().await });
        assert!(!recv2.is_woken());
        assert_eq!(Some(&msgs1[1]), assert_ready!(recv2.poll()).as_ref());
        drop(recv2);

        assert_eq!(0, rx.available_capacity());

        assert!(send2.is_woken());
        assert_eq!(Ok(()), assert_ready!(send2.poll()));

        // And just make sure we see those last two sends.
        let mut recv3 = spawn(async { rx.next().await });
        assert!(!recv3.is_woken());
        assert_eq!(Some(&msgs1[2]), assert_ready!(recv3.poll()).as_ref());
        drop(recv3);

        assert_eq!(3, rx.available_capacity());

        let mut recv4 = spawn(async { rx.next().await });
        assert!(!recv4.is_woken());
        assert_eq!(Some(msg2), assert_ready!(recv4.poll()));
        drop(recv4);

        assert_eq!(7, rx.available_capacity());
    }

    #[test]
    fn empty_receiver_returns_none_when_last_sender_drops() {
        let (mut tx, mut rx) = limited(1);

        assert_eq!(1, tx.available_capacity());

        let tx2 = tx.clone();
        let msg = Sample(42);

        // Create our send and receive futures.
        let mut send = spawn(async { tx.send(msg).await });

        let mut recv = spawn(async { rx.next().await });

        // Nobody should be woken up.
        assert!(!send.is_woken());
        assert!(!recv.is_woken());

        // Try polling our receive, which should be pending because we haven't anything yet.
        assert_pending!(recv.poll());

        // Now drop our second sender, which shouldn't do anything yet.
        drop(tx2);
        assert!(!recv.is_woken());
        assert_pending!(recv.poll());

        // Now drop our second sender, but not before doing a send, which should trigger closing the
        // semaphore which should let the receiver complete with no further waiting: one item and
        // then `None`.
        assert_eq!(Ok(()), assert_ready!(send.poll()));
        drop(send);
        drop(tx);

        assert!(recv.is_woken());
        assert_eq!(Some(msg), assert_ready!(recv.poll()));
        drop(recv);

        let mut recv2 = spawn(async { rx.next().await });
        assert!(!recv2.is_woken());
        assert_eq!(None, assert_ready!(recv2.poll()));
    }

    #[test]
    fn receiver_returns_none_once_empty_when_last_sender_drops() {
        let (tx, mut rx) = limited::<Sample>(1);

        assert_eq!(1, tx.available_capacity());

        let tx2 = tx.clone();

        // Create our receive future.
        let mut recv = spawn(async { rx.next().await });

        // Nobody should be woken up.
        assert!(!recv.is_woken());

        // Try polling our receive, which should be pending because we haven't anything yet.
        assert_pending!(recv.poll());

        // Now drop our first sender, which shouldn't do anything yet.
        drop(tx);
        assert!(!recv.is_woken());
        assert_pending!(recv.poll());

        // Now drop our second sender, which should trigger closing the semaphore which should let
        // the receive complete as there are no items to read.
        drop(tx2);
        assert!(recv.is_woken());
        assert_eq!(None, assert_ready!(recv.poll()));
    }

    #[test]
    fn oversized_send_allowed_when_empty() {
        let (mut tx, mut rx) = limited(1);

        assert_eq!(1, tx.available_capacity());

        let msg = MultiEventRecord::new(2);

        // Create our send and receive futures.
        let mut send = spawn(async { tx.send(msg.clone()).await });

        let mut recv = spawn(async { rx.next().await });

        // Nobody should be woken up.
        assert!(!send.is_woken());
        assert!(!recv.is_woken());

        // We should immediately be able to complete our send, which we don't have full
        // available capacity for, but will consume all of the available slots.
        assert_eq!(Ok(()), assert_ready!(send.poll()));
        drop(send);

        assert_eq!(0, tx.available_capacity());

        // Now we should be able to get back the oversized item, but our capacity should not be
        // greater than what we started with.
        assert_eq!(Some(msg), assert_ready!(recv.poll()));
        drop(recv);

        assert_eq!(1, rx.available_capacity());
    }

    #[test]
    fn oversized_send_allowed_when_partial_capacity() {
        let (mut tx, mut rx) = limited(2);

        assert_eq!(2, tx.available_capacity());

        let msg1 = MultiEventRecord::new(1);
        let msg2 = MultiEventRecord::new(3);

        // Create our send future.
        let mut send = spawn(async { tx.send(msg1.clone()).await });

        // Nobody should be woken up.
        assert!(!send.is_woken());

        // We should immediately be able to complete our send, which will only use up a single slot.
        assert_eq!(Ok(()), assert_ready!(send.poll()));
        drop(send);

        assert_eq!(1, tx.available_capacity());

        // Now we'll trigger another send which has an oversized item.  It shouldn't be able to send
        // until all permits are available.
        let mut send2 = spawn(async { tx.send(msg2.clone()).await });

        assert!(!send2.is_woken());
        assert_pending!(send2.poll());

        assert_eq!(0, rx.available_capacity());

        // Now do a receive which should return the one consumed slot, essentially allowing all
        // permits to be acquired by the blocked send.
        let mut recv = spawn(async { rx.next().await });
        assert!(!recv.is_woken());
        assert!(!send2.is_woken());

        assert_eq!(Some(msg1), assert_ready!(recv.poll()));
        drop(recv);

        assert_eq!(0, rx.available_capacity());

        // Now our blocked send should be able to proceed, and we should be able to read back the
        // item.
        assert_eq!(Ok(()), assert_ready!(send2.poll()));
        drop(send2);

        assert_eq!(0, tx.available_capacity());

        let mut recv2 = spawn(async { rx.next().await });
        assert_eq!(Some(msg2), assert_ready!(recv2.poll()));

        assert_eq!(2, tx.available_capacity());
    }
}