vector_buffers/topology/channel/limited_queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
use std::{
cmp, fmt,
pin::Pin,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
};
use async_stream::stream;
use crossbeam_queue::ArrayQueue;
use futures::Stream;
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
use crate::InMemoryBufferable;
/// Error returned by `LimitedSender::send` when the receiver has disconnected.
#[derive(Debug, PartialEq, Eq)]
pub struct SendError<T>(pub T);
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "receiver disconnected")
}
}
impl<T: fmt::Debug> std::error::Error for SendError<T> {}
/// Error returned by `LimitedSender::try_send`.
#[derive(Debug, PartialEq, Eq)]
pub enum TrySendError<T> {
InsufficientCapacity(T),
Disconnected(T),
}
impl<T> TrySendError<T> {
pub fn into_inner(self) -> T {
match self {
Self::InsufficientCapacity(item) | Self::Disconnected(item) => item,
}
}
}
impl<T> fmt::Display for TrySendError<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::InsufficientCapacity(_) => {
write!(fmt, "channel lacks sufficient capacity for send")
}
Self::Disconnected(_) => write!(fmt, "receiver disconnected"),
}
}
}
impl<T: fmt::Debug> std::error::Error for TrySendError<T> {}
#[derive(Debug)]
struct Inner<T> {
data: Arc<ArrayQueue<(OwnedSemaphorePermit, T)>>,
limit: usize,
limiter: Arc<Semaphore>,
read_waker: Arc<Notify>,
}
impl<T> Clone for Inner<T> {
fn clone(&self) -> Self {
Self {
data: self.data.clone(),
limit: self.limit,
limiter: self.limiter.clone(),
read_waker: self.read_waker.clone(),
}
}
}
#[derive(Debug)]
pub struct LimitedSender<T> {
inner: Inner<T>,
sender_count: Arc<AtomicUsize>,
}
impl<T: InMemoryBufferable> LimitedSender<T> {
#[allow(clippy::cast_possible_truncation)]
fn get_required_permits_for_item(&self, item: &T) -> u32 {
// We have to limit the number of permits we ask for to the overall limit since we're always
// willing to store more items than the limit if the queue is entirely empty, because
// otherwise we might deadlock ourselves by not being able to send a single item.
cmp::min(self.inner.limit, item.event_count()) as u32
}
/// Gets the number of items that this channel could accept.
pub fn available_capacity(&self) -> usize {
self.inner.limiter.available_permits()
}
/// Sends an item into the channel.
///
/// # Errors
///
/// If the receiver has disconnected (does not exist anymore), then `Err(SendError)` be returned
/// with the given `item`.
pub async fn send(&mut self, item: T) -> Result<(), SendError<T>> {
// Calculate how many permits we need, and wait until we can acquire all of them.
let permits_required = self.get_required_permits_for_item(&item);
let Ok(permits) = self
.inner
.limiter
.clone()
.acquire_many_owned(permits_required)
.await
else {
return Err(SendError(item));
};
self.inner
.data
.push((permits, item))
.unwrap_or_else(|_| unreachable!("acquired permits but channel reported being full"));
self.inner.read_waker.notify_one();
trace!("Sent item.");
Ok(())
}
/// Attempts to send an item into the channel.
///
/// # Errors
///
/// If the receiver has disconnected (does not exist anymore), then
/// `Err(TrySendError::Disconnected)` be returned with the given `item`. If the channel has
/// insufficient capacity for the item, then `Err(TrySendError::InsufficientCapacity)` will be
/// returned with the given `item`.
///
/// # Panics
///
/// Will panic if adding ack amount overflows.
pub fn try_send(&mut self, item: T) -> Result<(), TrySendError<T>> {
// Calculate how many permits we need, and try to acquire them all without waiting.
let permits_required = self.get_required_permits_for_item(&item);
let permits = match self
.inner
.limiter
.clone()
.try_acquire_many_owned(permits_required)
{
Ok(permits) => permits,
Err(ae) => {
return match ae {
TryAcquireError::NoPermits => Err(TrySendError::InsufficientCapacity(item)),
TryAcquireError::Closed => Err(TrySendError::Disconnected(item)),
}
}
};
self.inner
.data
.push((permits, item))
.unwrap_or_else(|_| unreachable!("acquired permits but channel reported being full"));
self.inner.read_waker.notify_one();
trace!("Attempt to send item succeeded.");
Ok(())
}
}
impl<T> Clone for LimitedSender<T> {
fn clone(&self) -> Self {
self.sender_count.fetch_add(1, Ordering::SeqCst);
Self {
inner: self.inner.clone(),
sender_count: Arc::clone(&self.sender_count),
}
}
}
impl<T> Drop for LimitedSender<T> {
fn drop(&mut self) {
// If we're the last sender to drop, close the semaphore on our way out the door.
if self.sender_count.fetch_sub(1, Ordering::SeqCst) == 1 {
self.inner.limiter.close();
self.inner.read_waker.notify_one();
}
}
}
#[derive(Debug)]
pub struct LimitedReceiver<T> {
inner: Inner<T>,
}
impl<T: Send + 'static> LimitedReceiver<T> {
/// Gets the number of items that this channel could accept.
pub fn available_capacity(&self) -> usize {
self.inner.limiter.available_permits()
}
pub async fn next(&mut self) -> Option<T> {
loop {
if let Some((_permit, item)) = self.inner.data.pop() {
return Some(item);
}
// There wasn't an item for us to pop, so see if the channel is actually closed. If so,
// then it's time for us to close up shop as well.
if self.inner.limiter.is_closed() {
return None;
}
// We're not closed, so we need to wait for a writer to tell us they made some
// progress. This might end up being a spurious wakeup since `Notify` will
// store a wake-up if there are no waiters, but oh well.
self.inner.read_waker.notified().await;
}
}
pub fn into_stream(self) -> Pin<Box<dyn Stream<Item = T> + Send>> {
let mut receiver = self;
Box::pin(stream! {
while let Some(item) = receiver.next().await {
yield item;
}
})
}
}
impl<T> Drop for LimitedReceiver<T> {
fn drop(&mut self) {
// Notify senders that the channel is now closed by closing the semaphore. Any pending
// acquisitions will be awoken and notified that the semaphore is closed, and further new
// sends will immediately see the semaphore is closed.
self.inner.limiter.close();
}
}
pub fn limited<T>(limit: usize) -> (LimitedSender<T>, LimitedReceiver<T>) {
let inner = Inner {
data: Arc::new(ArrayQueue::new(limit)),
limit,
limiter: Arc::new(Semaphore::new(limit)),
read_waker: Arc::new(Notify::new()),
};
let sender = LimitedSender {
inner: inner.clone(),
sender_count: Arc::new(AtomicUsize::new(1)),
};
let receiver = LimitedReceiver { inner };
(sender, receiver)
}
#[cfg(test)]
mod tests {
use tokio_test::{assert_pending, assert_ready, task::spawn};
use super::limited;
use crate::{
test::MultiEventRecord, topology::channel::limited_queue::SendError,
topology::test_util::Sample,
};
#[tokio::test]
async fn send_receive() {
let (mut tx, mut rx) = limited(2);
assert_eq!(2, tx.available_capacity());
let msg = Sample(42);
// Create our send and receive futures.
let mut send = spawn(async { tx.send(msg).await });
let mut recv = spawn(async { rx.next().await });
// Nobody should be woken up.
assert!(!send.is_woken());
assert!(!recv.is_woken());
// Try polling our receive, which should be pending because we haven't anything yet.
assert_pending!(recv.poll());
// We should immediately be able to complete a send as there is available capacity.
assert_eq!(Ok(()), assert_ready!(send.poll()));
// Now our receive should have been woken up, and should immediately be ready.
assert!(recv.is_woken());
assert_eq!(Some(msg), assert_ready!(recv.poll()));
}
#[test]
fn sender_waits_for_more_capacity_when_none_available() {
let (mut tx, mut rx) = limited(1);
assert_eq!(1, tx.available_capacity());
let msg1 = Sample(42);
let msg2 = Sample(43);
// Create our send and receive futures.
let mut send1 = spawn(async { tx.send(msg1).await });
let mut recv1 = spawn(async { rx.next().await });
// Nobody should be woken up.
assert!(!send1.is_woken());
assert!(!recv1.is_woken());
// Try polling our receive, which should be pending because we haven't anything yet.
assert_pending!(recv1.poll());
// We should immediately be able to complete a send as there is available capacity.
assert_eq!(Ok(()), assert_ready!(send1.poll()));
drop(send1);
assert_eq!(0, tx.available_capacity());
// Now our receive should have been woken up, and should immediately be ready... but we
// aren't going to read the value just yet.
assert!(recv1.is_woken());
// Now trigger a second send, which should block as there's no available capacity.
let mut send2 = spawn(async { tx.send(msg2).await });
assert!(!send2.is_woken());
assert_pending!(send2.poll());
// Now if we receive the item, our second send should be woken up and be able to send in.
assert_eq!(Some(msg1), assert_ready!(recv1.poll()));
drop(recv1);
// Since the second send was already waiting for permits, the semaphore returns them
// directly to our waiting send, which should now be woken up and able to complete:
assert_eq!(0, rx.available_capacity());
assert!(send2.is_woken());
let mut recv2 = spawn(async { rx.next().await });
assert_pending!(recv2.poll());
assert_eq!(Ok(()), assert_ready!(send2.poll()));
drop(send2);
assert_eq!(0, tx.available_capacity());
// And the final receive to get our second send:
assert!(recv2.is_woken());
assert_eq!(Some(msg2), assert_ready!(recv2.poll()));
assert_eq!(1, tx.available_capacity());
}
#[test]
fn sender_waits_for_more_capacity_when_partial_available() {
let (mut tx, mut rx) = limited(7);
assert_eq!(7, tx.available_capacity());
let msgs1 = vec![
MultiEventRecord::new(1),
MultiEventRecord::new(2),
MultiEventRecord::new(3),
];
let msg2 = MultiEventRecord::new(4);
// Create our send and receive futures.
let mut small_sends = spawn(async {
for msg in msgs1.clone() {
tx.send(msg).await?;
}
Ok::<_, SendError<MultiEventRecord>>(())
});
let mut recv1 = spawn(async { rx.next().await });
// Nobody should be woken up.
assert!(!small_sends.is_woken());
assert!(!recv1.is_woken());
// Try polling our receive, which should be pending because we haven't anything yet.
assert_pending!(recv1.poll());
// We should immediately be able to complete our three event sends, which we have
// available capacity for, but will consume all but one of the available slots.
assert_eq!(Ok(()), assert_ready!(small_sends.poll()));
drop(small_sends);
assert_eq!(1, tx.available_capacity());
// Now our receive should have been woken up, and should immediately be ready, but we won't
// receive just yet.
assert!(recv1.is_woken());
// Now trigger a second send that has four events, and needs to wait for two receives to happen.
let mut send2 = spawn(tx.send(msg2.clone()));
assert!(!send2.is_woken());
assert_pending!(send2.poll());
// Now if we receive the first item, our second send should be woken up but still not able
// to send.
assert_eq!(Some(&msgs1[0]), assert_ready!(recv1.poll()).as_ref());
drop(recv1);
// Callers waiting to acquire permits have the permits immediately transfer to them when one
// (or more) are released, so we expect this to be zero until we send and then read the
// third item.
assert_eq!(0, rx.available_capacity());
// We don't get woken up until all permits have been acquired.
assert!(!send2.is_woken());
// Our second read should unlock enough available capacity for the second send once complete.
let mut recv2 = spawn(async { rx.next().await });
assert!(!recv2.is_woken());
assert_eq!(Some(&msgs1[1]), assert_ready!(recv2.poll()).as_ref());
drop(recv2);
assert_eq!(0, rx.available_capacity());
assert!(send2.is_woken());
assert_eq!(Ok(()), assert_ready!(send2.poll()));
// And just make sure we see those last two sends.
let mut recv3 = spawn(async { rx.next().await });
assert!(!recv3.is_woken());
assert_eq!(Some(&msgs1[2]), assert_ready!(recv3.poll()).as_ref());
drop(recv3);
assert_eq!(3, rx.available_capacity());
let mut recv4 = spawn(async { rx.next().await });
assert!(!recv4.is_woken());
assert_eq!(Some(msg2), assert_ready!(recv4.poll()));
drop(recv4);
assert_eq!(7, rx.available_capacity());
}
#[test]
fn empty_receiver_returns_none_when_last_sender_drops() {
let (mut tx, mut rx) = limited(1);
assert_eq!(1, tx.available_capacity());
let tx2 = tx.clone();
let msg = Sample(42);
// Create our send and receive futures.
let mut send = spawn(async { tx.send(msg).await });
let mut recv = spawn(async { rx.next().await });
// Nobody should be woken up.
assert!(!send.is_woken());
assert!(!recv.is_woken());
// Try polling our receive, which should be pending because we haven't anything yet.
assert_pending!(recv.poll());
// Now drop our second sender, which shouldn't do anything yet.
drop(tx2);
assert!(!recv.is_woken());
assert_pending!(recv.poll());
// Now drop our second sender, but not before doing a send, which should trigger closing the
// semaphore which should let the receiver complete with no further waiting: one item and
// then `None`.
assert_eq!(Ok(()), assert_ready!(send.poll()));
drop(send);
drop(tx);
assert!(recv.is_woken());
assert_eq!(Some(msg), assert_ready!(recv.poll()));
drop(recv);
let mut recv2 = spawn(async { rx.next().await });
assert!(!recv2.is_woken());
assert_eq!(None, assert_ready!(recv2.poll()));
}
#[test]
fn receiver_returns_none_once_empty_when_last_sender_drops() {
let (tx, mut rx) = limited::<Sample>(1);
assert_eq!(1, tx.available_capacity());
let tx2 = tx.clone();
// Create our receive future.
let mut recv = spawn(async { rx.next().await });
// Nobody should be woken up.
assert!(!recv.is_woken());
// Try polling our receive, which should be pending because we haven't anything yet.
assert_pending!(recv.poll());
// Now drop our first sender, which shouldn't do anything yet.
drop(tx);
assert!(!recv.is_woken());
assert_pending!(recv.poll());
// Now drop our second sender, which should trigger closing the semaphore which should let
// the receive complete as there are no items to read.
drop(tx2);
assert!(recv.is_woken());
assert_eq!(None, assert_ready!(recv.poll()));
}
#[test]
fn oversized_send_allowed_when_empty() {
let (mut tx, mut rx) = limited(1);
assert_eq!(1, tx.available_capacity());
let msg = MultiEventRecord::new(2);
// Create our send and receive futures.
let mut send = spawn(async { tx.send(msg.clone()).await });
let mut recv = spawn(async { rx.next().await });
// Nobody should be woken up.
assert!(!send.is_woken());
assert!(!recv.is_woken());
// We should immediately be able to complete our send, which we don't have full
// available capacity for, but will consume all of the available slots.
assert_eq!(Ok(()), assert_ready!(send.poll()));
drop(send);
assert_eq!(0, tx.available_capacity());
// Now we should be able to get back the oversized item, but our capacity should not be
// greater than what we started with.
assert_eq!(Some(msg), assert_ready!(recv.poll()));
drop(recv);
assert_eq!(1, rx.available_capacity());
}
#[test]
fn oversized_send_allowed_when_partial_capacity() {
let (mut tx, mut rx) = limited(2);
assert_eq!(2, tx.available_capacity());
let msg1 = MultiEventRecord::new(1);
let msg2 = MultiEventRecord::new(3);
// Create our send future.
let mut send = spawn(async { tx.send(msg1.clone()).await });
// Nobody should be woken up.
assert!(!send.is_woken());
// We should immediately be able to complete our send, which will only use up a single slot.
assert_eq!(Ok(()), assert_ready!(send.poll()));
drop(send);
assert_eq!(1, tx.available_capacity());
// Now we'll trigger another send which has an oversized item. It shouldn't be able to send
// until all permits are available.
let mut send2 = spawn(async { tx.send(msg2.clone()).await });
assert!(!send2.is_woken());
assert_pending!(send2.poll());
assert_eq!(0, rx.available_capacity());
// Now do a receive which should return the one consumed slot, essentially allowing all
// permits to be acquired by the blocked send.
let mut recv = spawn(async { rx.next().await });
assert!(!recv.is_woken());
assert!(!send2.is_woken());
assert_eq!(Some(msg1), assert_ready!(recv.poll()));
drop(recv);
assert_eq!(0, rx.available_capacity());
// Now our blocked send should be able to proceed, and we should be able to read back the
// item.
assert_eq!(Ok(()), assert_ready!(send2.poll()));
drop(send2);
assert_eq!(0, tx.available_capacity());
let mut recv2 = spawn(async { rx.next().await });
assert_eq!(Some(msg2), assert_ready!(recv2.poll()));
assert_eq!(2, tx.available_capacity());
}
}