1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
use std::{
    cell::RefCell,
    collections::{BTreeSet, HashMap},
    env, mem,
};

use indexmap::IndexMap;
use serde_json::{Map, Value};
use vector_config_common::{attributes::CustomAttribute, constants, schema::*};

use crate::{
    num::ConfigurableNumber, Configurable, ConfigurableRef, GenerateError, Metadata, ToValue,
};

use super::visitors::{
    DisallowUnevaluatedPropertiesVisitor, GenerateHumanFriendlyNameVisitor,
    InlineSingleUseReferencesVisitor,
};

/// Applies metadata to the given schema.
///
/// Metadata can include semantic information (title, description, etc), validation (min/max, allowable
/// patterns, etc), as well as actual arbitrary key/value data.
pub fn apply_base_metadata(schema: &mut SchemaObject, metadata: Metadata) {
    apply_metadata(&<()>::as_configurable_ref(), schema, metadata)
}

fn apply_metadata(config: &ConfigurableRef, schema: &mut SchemaObject, metadata: Metadata) {
    let type_name = config.type_name();
    let base_metadata = config.make_metadata();

    // Calculate the title/description of this schema.
    //
    // If the given `metadata` has either a title or description present, we use both those values,
    // even if one of them is `None`. If both are `None`, we try falling back to the base metadata
    // for the configurable type.
    //
    // This ensures that per-field titles/descriptions can override the base title/description of
    // the type, without mixing and matching, as sometimes the base type's title/description is far
    // too generic and muddles the output. Essentially, if the callsite decides to provide an
    // overridden title/description, it controls the entire title/description.
    let (schema_title, schema_description) =
        if metadata.title().is_some() || metadata.description().is_some() {
            (metadata.title(), metadata.description())
        } else {
            (base_metadata.title(), base_metadata.description())
        };

    // A description _must_ be present, one way or another, _unless_ one of these two conditions is
    // met:
    // - the field is marked transparent
    // - the type is referenceable and _does_ have a description
    //
    // We panic otherwise.
    let has_referenceable_description =
        config.referenceable_name().is_some() && base_metadata.description().is_some();
    let is_transparent = base_metadata.transparent() || metadata.transparent();
    if schema_description.is_none() && !is_transparent && !has_referenceable_description {
        panic!("No description provided for `{type_name}`! All `Configurable` types must define a description, or have one specified at the field-level where the type is being used.");
    }

    // If a default value was given, serialize it.
    let schema_default = metadata.default_value().map(ToValue::to_value);

    // Take the existing schema metadata, if any, or create a default version of it, and then apply
    // all of our newly-calculated values to it.
    //
    // Similar to the above title/description logic, we update both title/description if either of
    // them have been set, to avoid mixing/matching between base and override metadata.
    let mut schema_metadata = schema.metadata.take().unwrap_or_default();
    if schema_title.is_some() || schema_description.is_some() {
        schema_metadata.title = schema_title.map(|s| s.to_string());
        schema_metadata.description = schema_description.map(|s| s.to_string());
    }
    schema_metadata.default = schema_default.or(schema_metadata.default);
    schema_metadata.deprecated = metadata.deprecated();

    // Set any custom attributes as extensions on the schema. If an attribute is declared multiple
    // times, we turn the value into an array and merge them together. We _do_ not that, however, if
    // the original value is a flag, or the value being added to an existing key is a flag, as
    // having a flag declared multiple times, or mixing a flag with a KV pair, doesn't make sense.
    let map_entries_len = {
        let custom_map = schema
            .extensions
            .entry("_metadata".to_string())
            .or_insert_with(|| Value::Object(Map::new()))
            .as_object_mut()
            .expect("metadata extension must always be a map");

        if let Some(message) = metadata.deprecated_message() {
            custom_map.insert(
                "deprecated_message".to_string(),
                serde_json::Value::String(message.to_string()),
            );
        }

        for attribute in metadata.custom_attributes() {
            match attribute {
                CustomAttribute::Flag(key) => {
                    match custom_map.insert(key.to_string(), Value::Bool(true)) {
                        // Overriding a flag is fine, because flags are only ever "enabled", so there's
                        // no harm to enabling it... again. Likewise, if there was no existing value,
                        // it's fine.
                        Some(Value::Bool(_)) | None => {},
                        // Any other value being present means we're clashing with a different metadata
                        // attribute, which is not good, so we have to bail out.
                        _ => panic!("Tried to set metadata flag '{key}' but already existed in schema metadata for `{type_name}`."),
                    }
                }
                CustomAttribute::KeyValue { key, value } => {
                    custom_map.entry(key.to_string())
                        .and_modify(|existing_value| match existing_value {
                            // We already have a flag entry for this key, which we cannot turn into an
                            // array, so we panic in this particular case to signify the weirdness.
                            Value::Bool(_) => {
                                panic!("Tried to overwrite metadata flag '{key}' but already existed in schema metadata for `{type_name}` as a flag.");
                            },
                            // The entry is already a multi-value KV pair, so just append the value.
                            Value::Array(items) => {
                                items.push(value.clone());
                            },
                            // The entry is not already a multi-value KV pair, so turn it into one.
                            _ => {
                                let taken_existing_value = std::mem::replace(existing_value, Value::Null);
                                *existing_value = Value::Array(vec![taken_existing_value, value.clone()]);
                            },
                        })
                        .or_insert(value.clone());
                }
            }
        }

        custom_map.len()
    };

    // If the schema had no existing metadata, and we didn't add any of our own, then remove the
    // metadata extension property entirely, as it would only add noise to the schema output.
    if map_entries_len == 0 {
        schema.extensions.remove("_metadata");
    }

    // Now apply any relevant validations.
    for validation in metadata.validations() {
        validation.apply(schema);
    }

    schema.metadata = Some(schema_metadata);
}

pub fn convert_to_flattened_schema(primary: &mut SchemaObject, mut subschemas: Vec<SchemaObject>) {
    // First, we replace the primary schema with an empty schema, because we need to push it the actual primary schema
    // into the list of `allOf` schemas. This is due to the fact that it's not valid to "extend" a schema using `allOf`,
    // so everything has to be in there.
    let primary_subschema = mem::take(primary);
    subschemas.insert(0, primary_subschema);

    let all_of_schemas = subschemas.into_iter().map(Schema::Object).collect();

    // Now update the primary schema to use `allOf` to bring everything together.
    primary.subschemas = Some(Box::new(SubschemaValidation {
        all_of: Some(all_of_schemas),
        ..Default::default()
    }));
}

pub fn generate_null_schema() -> SchemaObject {
    SchemaObject {
        instance_type: Some(InstanceType::Null.into()),
        ..Default::default()
    }
}

pub fn generate_bool_schema() -> SchemaObject {
    SchemaObject {
        instance_type: Some(InstanceType::Boolean.into()),
        ..Default::default()
    }
}

pub fn generate_string_schema() -> SchemaObject {
    SchemaObject {
        instance_type: Some(InstanceType::String.into()),
        ..Default::default()
    }
}

pub fn generate_number_schema<N>() -> SchemaObject
where
    N: ConfigurableNumber,
{
    // TODO: Once `schemars` has proper integer support, we should allow specifying min/max bounds
    // in a way that's relevant to the number class. As is, we're always forcing bounds to fit into
    // `f64` regardless of whether or not we're using `u64` vs `f64` vs `i16`, and so on.
    let minimum = N::get_enforced_min_bound();
    let maximum = N::get_enforced_max_bound();

    // We always set the minimum/maximum bound to the mechanical limits. Any additional constraining as part of field
    // validators will overwrite these limits.
    let mut schema = SchemaObject {
        instance_type: Some(N::class().as_instance_type().into()),
        number: Some(Box::new(NumberValidation {
            minimum: Some(minimum),
            maximum: Some(maximum),
            ..Default::default()
        })),
        ..Default::default()
    };

    // If the actual numeric type we're generating the schema for is a nonzero variant, and its constraint can't be
    // represented solely by the normal minimum/maximum bounds, we explicitly add an exclusion for the appropriate zero
    // value of the given numeric type.
    if N::requires_nonzero_exclusion() {
        schema.subschemas = Some(Box::new(SubschemaValidation {
            not: Some(Box::new(Schema::Object(SchemaObject {
                const_value: Some(Value::Number(N::get_encoded_zero_value())),
                ..Default::default()
            }))),
            ..Default::default()
        }));
    }

    schema
}

pub(crate) fn generate_array_schema(
    config: &ConfigurableRef,
    gen: &RefCell<SchemaGenerator>,
) -> Result<SchemaObject, GenerateError> {
    // Generate the actual schema for the element type.
    let element_schema = get_or_generate_schema(config, gen, None)?;

    Ok(SchemaObject {
        instance_type: Some(InstanceType::Array.into()),
        array: Some(Box::new(ArrayValidation {
            items: Some(SingleOrVec::Single(Box::new(element_schema.into()))),
            ..Default::default()
        })),
        ..Default::default()
    })
}

pub(crate) fn generate_set_schema(
    config: &ConfigurableRef,
    gen: &RefCell<SchemaGenerator>,
) -> Result<SchemaObject, GenerateError> {
    // Generate the actual schema for the element type.
    let element_schema = get_or_generate_schema(config, gen, None)?;

    Ok(SchemaObject {
        instance_type: Some(InstanceType::Array.into()),
        array: Some(Box::new(ArrayValidation {
            items: Some(SingleOrVec::Single(Box::new(element_schema.into()))),
            unique_items: Some(true),
            ..Default::default()
        })),
        ..Default::default()
    })
}

pub(crate) fn generate_map_schema(
    config: &ConfigurableRef,
    gen: &RefCell<SchemaGenerator>,
) -> Result<SchemaObject, GenerateError> {
    // Generate the actual schema for the element type.
    let element_schema = get_or_generate_schema(config, gen, None)?;

    Ok(SchemaObject {
        instance_type: Some(InstanceType::Object.into()),
        object: Some(Box::new(ObjectValidation {
            additional_properties: Some(Box::new(element_schema.into())),
            ..Default::default()
        })),
        ..Default::default()
    })
}

pub fn generate_struct_schema(
    properties: IndexMap<String, SchemaObject>,
    required: BTreeSet<String>,
    additional_properties: Option<Box<Schema>>,
) -> SchemaObject {
    let properties = properties
        .into_iter()
        .map(|(k, v)| (k, Schema::Object(v)))
        .collect();
    SchemaObject {
        instance_type: Some(InstanceType::Object.into()),
        object: Some(Box::new(ObjectValidation {
            properties,
            required,
            additional_properties,
            ..Default::default()
        })),
        ..Default::default()
    }
}

pub(crate) fn generate_optional_schema(
    config: &ConfigurableRef,
    gen: &RefCell<SchemaGenerator>,
) -> Result<SchemaObject, GenerateError> {
    // Optional schemas are generally very simple in practice, but because of how we memoize schema
    // generation and use references to schema definitions, we have to handle quite a few cases
    // here.
    //
    // Specifically, for the `T` in `Option<T>`, we might be dealing with:
    // - a scalar type, where we're going to emit a schema that has `"type": ["string","null"]`, or
    //   something to that effect, where we can simply add the `"`null"` instance type and be done
    // - we may have a referenceable type (i.e. `struct FooBar`) and then we need to generate the
    //   schema for that referenceable type and either:
    //   - append a "null" schema as a `oneOf`/`anyOf` if the generated schema for the referenceable
    //     type already uses that mechanism
    //   - create our own `oneOf` schema to map between either the "null" schema or the real schema

    // Generate the inner schema for the inner type. We'll add some override metadata, too, so that
    // we can mark this resulting schema as "optional". This is only consequential to documentation
    // generation so that some of the more complex code for parsing enum schemas can correctly
    // differentiate a `oneOf` schema that represents a Rust enum versus one that simply represents
    // our "null or X" wrapped schema.
    let mut overrides = Metadata::default();
    overrides.add_custom_attribute(CustomAttribute::flag(constants::DOCS_META_OPTIONAL));
    let mut schema = get_or_generate_schema(config, gen, Some(overrides))?;

    // Take the metadata and extensions of the original schema.
    //
    // We'll apply these back to `schema` at the end, which will either place them back where they
    // came from (if we don't have to wrap the original schema) or will apply them to the new
    // wrapped schema.
    let original_metadata = schema.metadata.take();
    let original_extensions = std::mem::take(&mut schema.extensions);

    // Figure out if the schema is a referenceable schema or a scalar schema.
    match schema.instance_type.as_mut() {
        // If the schema has no instance types, this implies it's a non-scalar schema: it references
        // another schema, or it's a composite schema/does subschema validation (`$ref`, `oneOf`,
        // `anyOf`, etc).
        //
        // Figure out which it is, and either modify the schema or generate a new schema accordingly.
        None => match schema.subschemas.as_mut() {
            None => {
                // If we don't have a scalar schema, or a schema that uses subschema validation,
                // then we simply create a new schema that uses `oneOf` to allow mapping to either
                // the existing schema _or_ a null schema.
                //
                // This should handle all cases of "normal" referenceable schema types.
                let wrapped_schema = SchemaObject {
                    subschemas: Some(Box::new(SubschemaValidation {
                        one_of: Some(vec![
                            Schema::Object(generate_null_schema()),
                            Schema::Object(std::mem::take(&mut schema)),
                        ]),
                        ..Default::default()
                    })),
                    ..Default::default()
                };

                schema = wrapped_schema;
            }
            Some(subschemas) => {
                if let Some(any_of) = subschemas.any_of.as_mut() {
                    // A null schema is just another possible variant, so we add it directly.
                    any_of.push(Schema::Object(generate_null_schema()));
                } else if let Some(one_of) = subschemas.one_of.as_mut() {
                    // A null schema is just another possible variant, so we add it directly.
                    one_of.push(Schema::Object(generate_null_schema()));
                } else if subschemas.all_of.is_some() {
                    // If we're dealing with an all-of schema, we have to build a new one-of schema
                    // where the two choices are either the `null` schema, or a subschema comprised of
                    // the all-of subschemas.
                    let all_of = subschemas
                        .all_of
                        .take()
                        .expect("all-of subschemas must be present here");
                    let new_all_of_schema = SchemaObject {
                        subschemas: Some(Box::new(SubschemaValidation {
                            all_of: Some(all_of),
                            ..Default::default()
                        })),
                        ..Default::default()
                    };

                    subschemas.one_of = Some(vec![
                        Schema::Object(generate_null_schema()),
                        Schema::Object(new_all_of_schema),
                    ]);
                } else {
                    return Err(GenerateError::InvalidOptionalSchema);
                }
            }
        },
        Some(sov) => match sov {
            SingleOrVec::Single(ty) if **ty != InstanceType::Null => {
                *sov = vec![**ty, InstanceType::Null].into()
            }
            SingleOrVec::Vec(ty) if !ty.contains(&InstanceType::Null) => {
                ty.push(InstanceType::Null)
            }
            _ => {}
        },
    }

    // Stick the metadata and extensions back on `schema`.
    schema.metadata = original_metadata;
    schema.extensions = original_extensions;

    Ok(schema)
}

pub fn generate_one_of_schema(subschemas: &[SchemaObject]) -> SchemaObject {
    let subschemas = subschemas
        .iter()
        .map(|s| Schema::Object(s.clone()))
        .collect::<Vec<_>>();

    SchemaObject {
        subschemas: Some(Box::new(SubschemaValidation {
            one_of: Some(subschemas),
            ..Default::default()
        })),
        ..Default::default()
    }
}

pub fn generate_any_of_schema(subschemas: &[SchemaObject]) -> SchemaObject {
    let subschemas = subschemas
        .iter()
        .map(|s| Schema::Object(s.clone()))
        .collect::<Vec<_>>();

    SchemaObject {
        subschemas: Some(Box::new(SubschemaValidation {
            any_of: Some(subschemas),
            ..Default::default()
        })),
        ..Default::default()
    }
}

pub fn generate_tuple_schema(subschemas: &[SchemaObject]) -> SchemaObject {
    let subschemas = subschemas
        .iter()
        .map(|s| Schema::Object(s.clone()))
        .collect::<Vec<_>>();

    SchemaObject {
        instance_type: Some(InstanceType::Array.into()),
        array: Some(Box::new(ArrayValidation {
            items: Some(SingleOrVec::Vec(subschemas)),
            // Rust's tuples are closed -- fixed size -- so we set `additionalItems` such that any
            // items past what we have in `items` will cause schema validation to fail.
            additional_items: Some(Box::new(Schema::Bool(false))),
            ..Default::default()
        })),
        ..Default::default()
    }
}

pub fn generate_enum_schema(values: Vec<Value>) -> SchemaObject {
    SchemaObject {
        enum_values: Some(values),
        ..Default::default()
    }
}

pub fn generate_const_string_schema(value: String) -> SchemaObject {
    SchemaObject {
        const_value: Some(Value::String(value)),
        ..Default::default()
    }
}

pub fn generate_internal_tagged_variant_schema(
    tag: String,
    value_schema: SchemaObject,
) -> SchemaObject {
    let mut properties = IndexMap::new();
    properties.insert(tag.clone(), value_schema);

    let mut required = BTreeSet::new();
    required.insert(tag);

    generate_struct_schema(properties, required, None)
}

pub fn default_schema_settings() -> SchemaSettings {
    SchemaSettings::new()
        .with_visitor(InlineSingleUseReferencesVisitor::from_settings)
        .with_visitor(DisallowUnevaluatedPropertiesVisitor::from_settings)
        .with_visitor(GenerateHumanFriendlyNameVisitor::from_settings)
}

pub fn generate_root_schema<T>() -> Result<RootSchema, GenerateError>
where
    T: Configurable + 'static,
{
    generate_root_schema_with_settings::<T>(default_schema_settings())
}

pub fn generate_root_schema_with_settings<T>(
    schema_settings: SchemaSettings,
) -> Result<RootSchema, GenerateError>
where
    T: Configurable + 'static,
{
    let schema_gen = RefCell::new(schema_settings.into_generator());

    // Set env variable to enable generating all schemas, including platform-specific ones.
    env::set_var("VECTOR_GENERATE_SCHEMA", "true");

    let schema =
        get_or_generate_schema(&T::as_configurable_ref(), &schema_gen, Some(T::metadata()))?;

    env::remove_var("VECTOR_GENERATE_SCHEMA");

    Ok(schema_gen.into_inner().into_root_schema(schema))
}

pub fn get_or_generate_schema(
    config: &ConfigurableRef,
    gen: &RefCell<SchemaGenerator>,
    overrides: Option<Metadata>,
) -> Result<SchemaObject, GenerateError> {
    let metadata = config.make_metadata();
    let (mut schema, metadata) = match config.referenceable_name() {
        // When the configurable type has a referenceable name, try looking it up in the schema
        // generator's definition list, and if it exists, create a schema reference to
        // it. Otherwise, generate it and backfill it in the schema generator.
        Some(name) => {
            if !gen.borrow().definitions().contains_key(name) {
                // In order to avoid infinite recursion, we copy the approach that `schemars` takes and
                // insert a dummy boolean schema before actually generating the real schema, and then
                // replace it afterwards. If any recursion occurs, a schema reference will be handed
                // back, which means we don't have to worry about the dummy schema needing to be updated
                // after the fact.
                gen.borrow_mut()
                    .definitions_mut()
                    .insert(name.to_string(), Schema::Bool(false));

                // We generate the schema for the type with its own default metadata, and not the
                // override metadata passed into this method, because the override metadata might
                // only be relevant to the place that the type is being used.
                //
                // For example, if the type was something for setting the logging level, one
                // component that allows the logging level to be changed for that component
                // specifically might want to specify a default value, whereas the configurable
                // should not have a default at all.  So, if we applied that override metadata, we'd
                // be unwittingly applying a default for all usages of the type that didn't override
                // the default themselves.
                let mut schema = config.generate_schema(gen)?;
                apply_metadata(config, &mut schema, metadata);

                gen.borrow_mut()
                    .definitions_mut()
                    .insert(name.to_string(), Schema::Object(schema));
            }

            (get_schema_ref(gen, name), None)
        }
        // Always generate the schema directly if the type is not referenceable.
        None => (config.generate_schema(gen)?, Some(metadata)),
    };

    // Figure out what metadata we should apply to the resulting schema.
    //
    // If the type was referenceable, we use its implicit metadata when generating the
    // "baseline" schema, because a referenceable type should always be self-contained. We then
    // apply the override metadata, if it exists, to the schema we got back. This allows us to
    // override titles, descriptions, and add additional attributes, and so on.
    //
    // If the type was not referenceable, we only generate its schema without trying to apply any
    // metadata. We do that because applying schema metadata enforces logic like "can't be without a
    // description". The implicit metadata for the type may lack that.
    if let Some(overrides) = overrides.as_ref() {
        config.validate_metadata(overrides)?;
    }

    match metadata {
        // If we generated the schema for a referenceable type, we won't need to merge its implicit
        // metadata into the schema we're returning _here_, so just use the override metadata if
        // it was given.
        None => {
            if let Some(metadata) = overrides {
                apply_metadata(config, &mut schema, metadata);
            }
        }

        // If we didn't generate the schema for a referenceable type, we'll be holding its implicit
        // metadata here, which we need to merge the override metadata into if it was given. If
        // there was no override metadata, then we just use the base by itself.
        Some(base) => match overrides {
            None => apply_metadata(config, &mut schema, base),
            Some(overrides) => apply_metadata(config, &mut schema, base.merge(overrides)),
        },
    };

    Ok(schema)
}

fn get_schema_ref<S: AsRef<str>>(gen: &RefCell<SchemaGenerator>, name: S) -> SchemaObject {
    let ref_path = format!(
        "{}{}",
        gen.borrow().settings().definitions_path(),
        name.as_ref()
    );
    SchemaObject::new_ref(ref_path)
}

/// Asserts that the key type `K` generates a string-like schema, suitable for use in maps.
///
/// This function generates a schema for `K` and ensures that the resulting schema is explicitly,
/// but only, represented as a `string` data type. This is necessary to ensure that `K` can be used
/// as the key type for maps, as maps are represented by the `object` data type in JSON Schema,
/// which must have fields with valid string identifiers.
///
/// # Errors
///
/// If the schema is not a valid, string-like schema, an error variant will be returned describing
/// the issue.
pub(crate) fn assert_string_schema_for_map(
    config: &ConfigurableRef,
    gen: &RefCell<SchemaGenerator>,
    map_type: &'static str,
) -> Result<(), GenerateError> {
    let key_schema = get_or_generate_schema(config, gen, None)?;
    let key_type = config.type_name();

    // We need to force the schema to be treated as transparent so that when the schema generation
    // finalizes the schema, we don't throw an error due to a lack of title/description.
    let mut key_metadata = Metadata::default();
    key_metadata.set_transparent();

    let wrapped_schema = Schema::Object(key_schema);

    // Get a reference to the underlying schema if we're dealing with a reference, or just use what
    // we have if it's the actual definition.
    let gen = gen.borrow();
    let underlying_schema = if wrapped_schema.is_ref() {
        gen.dereference(&wrapped_schema)
    } else {
        Some(&wrapped_schema)
    };

    let is_string_like = match underlying_schema {
        Some(Schema::Object(schema_object)) => match schema_object.instance_type.as_ref() {
            Some(sov) => match sov {
                // Has to be a string.
                SingleOrVec::Single(it) => **it == InstanceType::String,
                // As long as there's only one instance type, and it's string, we're fine
                // with that, too.
                SingleOrVec::Vec(its) => {
                    its.len() == 1
                        && its
                            .first()
                            .filter(|it| *it == &InstanceType::String)
                            .is_some()
                }
            },
            // We match explicitly, so a lack of declared instance types is not considered
            // valid here.
            None => false,
        },
        // We match explicitly, so boolean schemas aren't considered valid here.
        _ => false,
    };

    if !is_string_like {
        Err(GenerateError::MapKeyNotStringLike { key_type, map_type })
    } else {
        Ok(())
    }
}

/// Determines whether or not an enum schema is ambiguous based on discriminants of its variants.
///
/// A discriminant is the set of the named fields which are required, which may be an empty set.
pub fn has_ambiguous_discriminants(
    discriminants: &HashMap<&'static str, BTreeSet<String>>,
) -> bool {
    // Firstly, if there's less than two discriminants, then there can't be any ambiguity.
    if discriminants.len() < 2 {
        return false;
    }

    // Any empty discriminant is considered ambiguous.
    if discriminants
        .values()
        .any(|discriminant| discriminant.is_empty())
    {
        return true;
    }

    // Now collapse the list of discriminants into another set, which will eliminate any duplicate
    // sets. If there are any duplicate sets, this would also imply ambiguity, since there's not
    // enough discrimination via required fields.
    let deduplicated = discriminants.values().cloned().collect::<BTreeSet<_>>();
    if deduplicated.len() != discriminants.len() {
        return true;
    }

    false
}