1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
use std::collections::{HashMap, HashSet};
use serde_json::Value;
use tracing::debug;
use vector_config_common::schema::{visit::Visitor, *};
use crate::schema::visitors::merge::Mergeable;
use super::scoped_visit::{
visit_schema_object_scoped, SchemaReference, SchemaScopeStack, ScopedVisitor,
};
/// A visitor that inlines schema references where the referenced schema is only referenced once.
///
/// In many cases, the schema generation will produce schema definitions where either generics or
/// flattening are involved, which leads to schema definitions that may only be referenced by one
/// other schema definition, and so on.
///
/// This is suboptimal due to the "pointer chasing" involved to resolve those schema references,
/// when there's no reason to inherently have a schema be defined such that it can be referenced.
///
/// This visitor collects a list of all schema references, and for any schemas which are referenced
/// only once, will replace those references by inlining the referenced schema directly, and
/// deleting the schema definition from the root definitions.
#[derive(Debug, Default)]
pub struct InlineSingleUseReferencesVisitor {
eligible_to_inline: HashSet<String>,
}
impl InlineSingleUseReferencesVisitor {
pub fn from_settings(_: &SchemaSettings) -> Self {
Self {
eligible_to_inline: HashSet::new(),
}
}
}
impl Visitor for InlineSingleUseReferencesVisitor {
fn visit_root_schema(&mut self, root: &mut RootSchema) {
// Build a map of schema references and the number of times they're referenced through the
// entire schema, by visiting the root schema in a recursive fashion, using a helper visitor.
let mut occurrence_visitor = OccurrenceVisitor::default();
occurrence_visitor.visit_root_schema(root);
let occurrence_map = occurrence_visitor.into_occurrences();
self.eligible_to_inline = occurrence_map
.into_iter()
// Filter out any schemas which have more than one occurrence, as naturally, we're
// trying to inline single-use schema references. :)
.filter_map(|(def_name, occurrences)| (occurrences == 1).then_some(def_name))
// However, we'll also filter out some specific schema definitions which are only
// referenced once, specifically: component base types and component types themselves.
//
// We do this as a lot of the tooling that parses the schema to generate documentation,
// and the like, depends on these schemas existing in the top-level definitions for easy
// lookup.
.filter(|def_name| {
let schema = root
.definitions
.get(def_name.as_ref())
.and_then(Schema::as_object)
.expect("schema definition must exist");
is_inlineable_schema(def_name.as_ref(), schema)
})
.map(|s| s.as_ref().to_string())
.collect::<HashSet<_>>();
// Now run our own visitor logic, which will use the inline eligibility to determine if a
// schema reference in a being-visited schema should be replaced inline with the original
// referenced schema, in turn removing the schema definition.
visit::visit_root_schema(self, root);
// Now remove all of the definitions for schemas that were eligible for inlining.
for schema_def_name in self.eligible_to_inline.drain() {
debug!(
referent = schema_def_name,
"Removing schema definition from root schema."
);
root.definitions
.remove(&schema_def_name)
.expect("referenced schema must exist in definitions");
}
}
fn visit_schema_object(
&mut self,
definitions: &mut Map<String, Schema>,
schema: &mut SchemaObject,
) {
// Recursively visit this schema first.
visit::visit_schema_object(self, definitions, schema);
// If this schema has a schema reference, see if it's in our inline eligibility map. If so,
// we remove the referenced schema from the definitions, and then merge it into the current
// schema, after removing the `$ref` field.
if let Some(schema_ref) = schema.reference.as_ref().cloned() {
let schema_ref = get_cleaned_schema_reference(&schema_ref);
if self.eligible_to_inline.contains(schema_ref) {
let referenced_schema = definitions
.get(schema_ref)
.expect("referenced schema must exist in definitions");
if let Schema::Object(referenced_schema) = referenced_schema {
debug!(
referent = schema_ref,
"Inlining eligible schema reference into current schema."
);
schema.reference = None;
schema.merge(referenced_schema);
}
}
}
}
}
fn is_inlineable_schema(definition_name: &str, schema: &SchemaObject) -> bool {
static DISALLOWED_SCHEMAS: &[&str] = &[
"vector::sources::Sources",
"vector::transforms::Transforms",
"vector::sinks::Sinks",
];
// We want to avoid inlining all of the relevant top-level types used for defining components:
// the "outer" types (i.e. `SinkOuter<T>`), the enum/collection types (i.e. the big `Sources`
// enum), and the component configuration types themselves (i.e. `AmqpSinkConfig`).
//
// There's nothing _technically_ wrong with doing so, but it would break downstream consumers of
// the schema that parse it in order to extract the individual components and other
// component-specific metadata.
let is_component_base = get_schema_metadata_attr(schema, "docs::component_base_type").is_some();
let is_component = get_schema_metadata_attr(schema, "docs::component_type").is_some();
let is_allowed_schema = !DISALLOWED_SCHEMAS.contains(&definition_name);
!is_component_base && !is_component && is_allowed_schema
}
#[derive(Debug, Default)]
struct OccurrenceVisitor {
scope_stack: SchemaScopeStack,
occurrence_map: HashMap<SchemaReference, HashSet<SchemaReference>>,
}
impl OccurrenceVisitor {
fn into_occurrences(self) -> HashMap<SchemaReference, usize> {
self.occurrence_map
.into_iter()
.map(|(k, v)| (k, v.len()))
.collect()
}
}
impl Visitor for OccurrenceVisitor {
fn visit_schema_object(
&mut self,
definitions: &mut Map<String, Schema>,
schema: &mut SchemaObject,
) {
visit_schema_object_scoped(self, definitions, schema);
if let Some(current_schema_ref) = schema.reference.as_ref() {
// Track the named "parent" schema for the schema we're currently visiting so that if we
// visit this schema again, we don't double count any schema references that it has. The
// "parent" schema is simply the closest ancestor schema that was itself a schema
// reference, or "Root", which represents the oldest schema ancestor in the document.
//
// This lets us couple with scenarios where schema A references schema B, and is the
// only actual direct schema reference to schema B, but due to multiple schemas
// referencing schema A, would otherwise lead to both A and B being visited multiple
// times.
let current_parent_schema_ref = self.get_current_schema_scope().clone();
let current_schema_ref = get_cleaned_schema_reference(current_schema_ref);
let occurrences = self
.occurrence_map
.entry(current_schema_ref.into())
.or_default();
occurrences.insert(current_parent_schema_ref);
}
}
}
impl ScopedVisitor for OccurrenceVisitor {
fn push_schema_scope<S: Into<SchemaReference>>(&mut self, scope: S) {
self.scope_stack.push(scope.into());
}
fn pop_schema_scope(&mut self) {
self.scope_stack.pop().expect("stack was empty during pop");
}
fn get_current_schema_scope(&self) -> &SchemaReference {
self.scope_stack.current().unwrap_or(&SchemaReference::Root)
}
}
fn get_schema_metadata_attr<'a>(schema: &'a SchemaObject, key: &str) -> Option<&'a Value> {
schema
.extensions
.get("_metadata")
.and_then(|metadata| metadata.get(key))
}
#[cfg(test)]
mod tests {
use serde_json::json;
use vector_config_common::schema::visit::Visitor;
use crate::schema::visitors::test::{as_schema, assert_schemas_eq};
use super::InlineSingleUseReferencesVisitor;
#[test]
fn no_refs() {
let mut actual_schema = as_schema(json!({
"type": "object",
"properties": {
"a": { "type": "string" }
}
}));
let expected_schema = actual_schema.clone();
let mut visitor = InlineSingleUseReferencesVisitor::default();
visitor.visit_root_schema(&mut actual_schema);
assert_schemas_eq(expected_schema, actual_schema);
}
#[test]
fn single_ref_single_usage() {
let mut actual_schema = as_schema(json!({
"$ref": "#/definitions/simple",
"definitions": {
"simple": {
"type": "object",
"properties": {
"a": { "type": "string" }
}
}
}
}));
let mut visitor = InlineSingleUseReferencesVisitor::default();
visitor.visit_root_schema(&mut actual_schema);
let expected_schema = as_schema(json!({
"type": "object",
"properties": {
"a": { "type": "string" }
},
}));
assert_schemas_eq(expected_schema, actual_schema);
}
// TODO(tobz): These two tests are ignored because the inliner currently works off of schema
// reference scopes, so two object properties within the same schema don't count as two
// instances of a schema being referenced.
//
// We need to refactor schema scopes to be piecemeal extensible more in the way of how
// `jsonschema` does it rather than an actual stack.... the current approach is good enough for
// now, but not optimal in the way that it could be.
//
// These are here for when I improve the situation after getting this merged.
#[test]
#[ignore]
fn single_ref_multiple_usages() {
let mut actual_schema = as_schema(json!({
"definitions": {
"simple": {
"type": "object",
"properties": {
"a": { "type": "string" }
}
}
},
"type": "object",
"properties": {
"a": { "$ref": "#/definitions/simple" },
"b": { "$ref": "#/definitions/simple" }
}
}));
let expected_schema = actual_schema.clone();
let mut visitor = InlineSingleUseReferencesVisitor::default();
visitor.visit_root_schema(&mut actual_schema);
assert_schemas_eq(expected_schema, actual_schema);
}
#[test]
#[ignore]
fn multiple_refs_mixed_usages() {
let mut actual_schema = as_schema(json!({
"definitions": {
"simple": {
"type": "object",
"properties": {
"a": { "type": "string" }
}
},
"advanced": {
"type": "object",
"properties": {
"b": { "type": "string" }
}
}
},
"type": "object",
"properties": {
"a": { "$ref": "#/definitions/simple" },
"b": { "$ref": "#/definitions/simple" },
"c": { "$ref": "#/definitions/advanced" },
}
}));
let mut visitor = InlineSingleUseReferencesVisitor::default();
visitor.visit_root_schema(&mut actual_schema);
let expected_schema = as_schema(json!({
"definitions": {
"simple": {
"type": "object",
"properties": {
"a": { "type": "string" }
}
}
},
"type": "object",
"properties": {
"a": { "$ref": "#/definitions/simple" },
"b": { "$ref": "#/definitions/simple" },
"c": {
"type": "object",
"properties": {
"b": { "type": "string" }
}
}
}
}));
assert_schemas_eq(expected_schema, actual_schema);
}
}