1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
use darling::{ast::NestedMeta, error::Accumulator};
use quote::{quote, ToTokens};
use serde_derive_internals::{attr as serde_attr, Ctxt};
use syn::{
punctuated::Punctuated, spanned::Spanned, token::Comma, Attribute, Expr, ExprLit, ExprPath,
Lit, Meta, MetaNameValue,
};
const ERR_FIELD_MISSING_DESCRIPTION: &str = "field must have a description -- i.e. `/// This is a widget...` or `#[configurable(description = \"...\")] -- or derive it from the underlying type of the field by specifying `#[configurable(derived)]`";
const ERR_FIELD_IMPLICIT_TRANSPARENT: &str =
"field in a newtype wrapper should not be manually marked as `derived`/`transparent`";
pub fn try_extract_doc_title_description(
attributes: &[Attribute],
) -> (Option<String>, Option<String>) {
// Scrape all the attributes that have the `doc` path, which will be used for holding doc
// comments that we're interested in utilizing, and extract their value.
let doc_comments = attributes
.iter()
// We only care about `doc` attributes.
.filter(|attribute| attribute.path().is_ident("doc"))
// Extract the value of the attribute if it's in the form of `doc = "..."`.
.filter_map(|attribute| match &attribute.meta {
Meta::NameValue(MetaNameValue {
value:
Expr::Lit(ExprLit {
lit: Lit::Str(s), ..
}),
..
}) => Some(s.value()),
_ => None,
})
.collect::<Vec<_>>();
// If there were no doc comments, then we have no title/description to try and extract.
if doc_comments.is_empty() {
return (None, None);
}
// We emulate what `cargo doc` does, which is that if you have a doc comment with a bunch of
// text, then an empty line, and then more text, it considers the first chunk the title, and
// the second chunk the description.
//
// If there's no empty line, then we just consider it all the description.
//
// The grouping logic of `group_doc_lines` lets us determine which scenario we're dealing with
// based on the number of grouped lines.
let mut grouped_lines = group_doc_lines(&doc_comments);
match grouped_lines.len() {
// No title or description.
0 => (None, None),
// Just a single grouped line/paragraph, so we emit that as the description.
1 => (None, none_if_empty(grouped_lines.remove(0))),
// Two or more grouped lines/paragraphs, so the first one is the title, and the rest are the
// description, which we concatenate together with newlines, since the description at least
// needs to be a single string.
_ => {
let title = grouped_lines.remove(0);
let description = grouped_lines.join("\n\n");
(none_if_empty(title), none_if_empty(description))
}
}
}
fn group_doc_lines(ungrouped: &[String]) -> Vec<String> {
// When we write a doc comment in Rust, it typically ends up looking something like this:
//
// /// A helper for XYZ.
// ///
// /// This helper works in the following way, and so on and so forth.
// ///
// /// This separate paragraph explains a different, but related, aspect
// /// of the helper.
//
// To humans, this format is natural and we see it and read it as three paragraphs. Once those
// doc comments are processed and we get them in a procedural macro, they look like this,
// though:
//
// #[doc = " A helper for XYZ."]
// #[doc = ""]
// #[doc = " This helper works in the following way, and so on and so forth."]
// #[doc = ""]
// #[doc = " This separate paragraph explains a different, but related, aspect"]
// #[doc = " of the helper."]
//
// What we want to do is actually parse this as three paragraphs, with the individual lines of
// each paragraph merged together as a single string, and extraneous whitespace removed, such
// that we should end up with a vector of strings that looks like:
//
// - "A helper for XYZ."
// - "This helper works in the following way, and so on and so forth."
// - "This separate paragraph explains a different, but related, aspect\n of the helper."
// TODO: Markdown link reference definitions (LFDs) -- e.g. `[foo]: https://zombohtml5.com` --
// have to be on their own line, which is a little annoying because ideally we want to remove
// the newlines between lines that simply get line wrapped, such that in the above example.
// While that extra newline towards the end of the third line/paragraph is extraneous, because
// it represents a forced line break which is imposing some measure of stylistic license, we
// _do_ need line breaks to stay in place so that LFDs stay on their own line, otherwise it
// seems like Markdown parsers will treat them as free-form text.
//
// I'm not sure if we'll want to go as far as trying to parse each line specifically as an LFD,
// for the purpose of controlling how we add/remove linebreaks... but it's something we'll
// likely want/need to eventually figure out.
let mut buffer = String::new();
let mut grouped = ungrouped.iter().fold(Vec::new(), |mut grouped, line| {
match line.as_str() {
// Full line breaks -- i.e. `#[doc = ""]` -- will be empty strings, which is our
// signal to consume our buffer and emit it as a grouped line/paragraph.
"" => {
if !buffer.is_empty() {
let trimmed = buffer.trim().to_string();
grouped.push(trimmed);
buffer.clear();
}
}
// The line actually has some content, so just append it to our string buffer after
// dropping the leading space, if one exists.
s => {
buffer.push_str(s.strip_prefix(' ').unwrap_or(s));
buffer.push('\n');
}
};
grouped
});
// If we have anything left in the buffer, consume it as a grouped line/paragraph.
if !buffer.is_empty() {
let trimmed = buffer.trim().to_string();
grouped.push(trimmed);
}
grouped
}
fn none_if_empty(s: String) -> Option<String> {
if s.is_empty() {
None
} else {
Some(s)
}
}
pub fn err_field_missing_description<T: Spanned>(field: &T) -> darling::Error {
darling::Error::custom(ERR_FIELD_MISSING_DESCRIPTION).with_span(field)
}
pub fn err_field_implicit_transparent<T: Spanned>(field: &T) -> darling::Error {
darling::Error::custom(ERR_FIELD_IMPLICIT_TRANSPARENT).with_span(field)
}
pub fn get_serde_default_value<S: ToTokens>(
source: &S,
default: &serde_attr::Default,
) -> Option<ExprPath> {
match default {
serde_attr::Default::None => None,
serde_attr::Default::Default => {
let qualified_path = syn::parse2(quote! {
<#source as ::std::default::Default>::default
})
.expect("should not fail to parse qualified default path");
Some(qualified_path)
}
serde_attr::Default::Path(path) => Some(path.clone()),
}
}
pub fn err_serde_failed(context: Ctxt) -> darling::Error {
context
.check()
.map_err(|errs| darling::Error::multiple(errs.into_iter().map(Into::into).collect()))
.expect_err("serde error context should not be empty")
}
pub trait DarlingResultIterator<I> {
fn collect_darling_results(self, accumulator: &mut Accumulator) -> Vec<I>;
}
impl<I, T> DarlingResultIterator<I> for T
where
T: Iterator<Item = Result<I, darling::Error>>,
{
fn collect_darling_results(self, accumulator: &mut Accumulator) -> Vec<I> {
self.filter_map(|result| accumulator.handle(result))
.collect()
}
}
/// Checks if the path matches `other`.
///
/// If a valid ident can be constructed from the path, and the ident's value matches `other`,
/// `true` is returned. Otherwise, `false` is returned.
fn path_matches<S: AsRef<str>>(path: &syn::Path, other: S) -> bool {
path.get_ident().filter(|i| *i == &other).is_some()
}
/// Tries to find a specific attribute with a specific name/value pair.
///
/// Only works with derive macro helper attributes, and not raw name/value attributes such as
/// `#[path = "..."]`.
///
/// If an attribute with a path matching `attr_name`, and a meta name/value pair with a name
/// matching `name_key` is found, `Some(path)` is returned, representing the value of the name/value pair.
///
/// If no attribute matches, or if the given name/value pair is not found, `None` is returned.
fn find_name_value_attribute(
attributes: &[syn::Attribute],
attr_name: &str,
name_key: &str,
) -> Option<Lit> {
attributes
.iter()
// Only take attributes whose name matches `attr_name`.
.filter(|attr| path_matches(attr.path(), attr_name))
// Derive macro helper attributes will always be in the list form.
.filter_map(|attr| match &attr.meta {
Meta::List(ml) => ml
.parse_args_with(Punctuated::<NestedMeta, Comma>::parse_terminated)
.map(|nested| nested.into_iter())
.ok(),
_ => None,
})
.flatten()
// For each nested meta item in the list, find any that are name/value pairs where the
// name matches `name_key`, and return their value.
.find_map(|nm| match nm {
NestedMeta::Meta(meta) => match meta {
Meta::NameValue(nv) if path_matches(&nv.path, name_key) => match nv.value {
Expr::Lit(ExprLit { lit, .. }) => Some(lit),
_ => None,
},
_ => None,
},
_ => None,
})
}
/// Tries to find a delegated (de)serialization type from attributes.
///
/// In some cases, the `serde_with` crate, more specifically the `serde_as` attribute macro, may be
/// used to help (de)serialize a field/container with type A via a (de)implementation on type B, in order to
/// provide more ergonomic (de)serialization of values that can represent type A without needing to
/// explicitly match type A when (de)serialized. This is similar to `serde`'s existing support for
/// "remote" types but is taken further with a more generic and extensible approach.
///
/// This, however, presents an issue because while normally we can handle scenarios like
/// `#[serde(from = "...")]` and its siblings, `serde_as` depends on `#[serde(with = "...")]` and
/// the fact that it simply constructs a path to the (de)serialize methods, rather than always
/// needing to explicitly reference a type. This means that we cannot simply grab the value of the
/// `with` name/value pair blindly, and assume if there's a value that a delegated/remote type is in
/// play... it could be a module path, too.
///
/// This method looks for two indicators to understand when it should be able to extract the
/// delegated type:
///
/// - `#[serde(with = "...")]` is present
/// - `#[serde_as(as = "...")]` is present
///
/// When both of these are true, we can rely on the fact that the value of `with` will be a valid
/// type path, and usable like a virtual newtype, which is where we use the type specified for
/// `try_from`/`from`/`into` for the delegated (de)serialization type of a container itself.
///
/// If we find both of those attribute name/value pairs, and the value of `with` can be parsed
/// successfully as a type path, `Some(...)` is returned, contained the type. Otherwise, `None` is
/// returned.
pub fn find_delegated_serde_deser_ty(attributes: &[syn::Attribute]) -> Option<syn::Type> {
// Make sure `#[serde_as(as = "...")]` is present.
find_name_value_attribute(attributes, "serde_as", "r#as")
// Make sure `#[serde(with = "...")]` is present, and grab its value.
.and_then(|_| find_name_value_attribute(attributes, "serde", "with"))
// Try and parse the value as a type path.
.and_then(|with| match with {
Lit::Str(s) => s.parse::<syn::Type>().ok(),
_ => None,
})
}