1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
use proc_macro::TokenStream;
use proc_macro2::Span;
use quote::{quote, quote_spanned};
use syn::{
parse_macro_input, parse_quote, spanned::Spanned, token::PathSep, DeriveInput, ExprPath, Ident,
PathArguments, Type,
};
use vector_config_common::validation::Validation;
use crate::ast::{Container, Data, Field, LazyCustomAttribute, Style, Tagging, Variant};
pub fn derive_configurable_impl(input: TokenStream) -> TokenStream {
// Parse our input token stream as a derive input, and process the container, and the
// container's children, that the macro is applied to.
let input = parse_macro_input!(input as DeriveInput);
let container = match Container::from_derive_input(&input) {
Ok(container) => container,
Err(e) => {
// This should only occur when used on a union, as that's the only time `serde` will get
// angry enough to not parse the derive AST at all, so we just return the context errors
// we have, which will say as much, because also, if it gave us `None`, it should have
// registered an error in the context as well.
return e.write_errors().into();
}
};
let mut generics = container.generics().clone();
// We need to construct an updated where clause that properly constrains any generic types which are used as fields
// on the container. We _only_ care about fields that are pure generic types, because anything that's a concrete
// type -- Foo<T> -- will be checked when the schema is generated, but we want generic types to be able to be
// resolved for compatibility at the point of usage, not the point of definition.
let generic_field_types = container.generic_field_types();
if !generic_field_types.is_empty() {
let where_clause = generics.make_where_clause();
for typ in generic_field_types {
let ty = &typ.ident;
let predicate = parse_quote! { #ty: ::vector_config::Configurable + ::serde::Serialize + ::vector_config::ToValue };
where_clause.predicates.push(predicate);
}
}
let (impl_generics, ty_generics, where_clause) = generics.split_for_impl();
// Now we can go ahead and actually generate the method bodies for our `Configurable` impl,
// which are varied based on whether we have a struct or enum container.
let metadata_fn = build_metadata_fn(&container);
let generate_schema_fn = match container.virtual_newtype() {
Some(virtual_ty) => build_virtual_newtype_schema_fn(virtual_ty),
None => match container.data() {
Data::Struct(style, fields) => {
build_struct_generate_schema_fn(&container, style, fields)
}
Data::Enum(variants) => build_enum_generate_schema_fn(&container, variants),
},
};
let to_value_fn = build_to_value_fn(&container);
let name = container.ident();
let ref_name = container.name();
let configurable_impl = quote! {
const _: () = {
#[automatically_derived]
#[allow(unused_qualifications)]
impl #impl_generics ::vector_config::Configurable for #name #ty_generics #where_clause {
fn referenceable_name() -> Option<&'static str> {
// If the type name we get back from `std::any::type_name` doesn't start with
// the module path, use a concatenated version.
//
// We do this because `std::any::type_name` states it may or may not return a
// fully-qualified type path, as that behavior is not stabilized, so we want to
// avoid using non-fully-qualified paths since we might encounter collisions
// with schema reference names otherwise.
//
// The reason we don't _only_ use the manually-concatenated version is because
// it's a little difficult to get it to emit a clean name, as we can't emit
// pretty-printed tokens directly -- i.e. just emit the tokens that represent
// `MyStructName<T, U, ...>` -- and would need to format the string to do so,
// which would mean we wouldn't be able to return `&'static str`.
//
// We'll likely relax that in the future, given the inconsequential nature of
// allocations during configuration schema generation... but this works well for
// now and at least will be consistent within the same Rust version.
let self_type_name = ::std::any::type_name::<Self>();
if !self_type_name.starts_with(std::module_path!()) {
Some(std::concat!(std::module_path!(), "::", #ref_name))
} else {
Some(self_type_name)
}
}
#metadata_fn
#generate_schema_fn
}
impl #impl_generics ::vector_config::ToValue for #name #ty_generics #where_clause {
#to_value_fn
}
};
};
configurable_impl.into()
}
fn build_metadata_fn(container: &Container<'_>) -> proc_macro2::TokenStream {
let meta_ident = Ident::new("metadata", Span::call_site());
let container_metadata = generate_container_metadata(&meta_ident, container);
quote! {
fn metadata() -> ::vector_config::Metadata {
#container_metadata
#meta_ident
}
}
}
fn build_to_value_fn(_container: &Container<'_>) -> proc_macro2::TokenStream {
quote! {
fn to_value(&self) -> ::vector_config::serde_json::Value {
::vector_config::serde_json::to_value(self)
.expect("Could not convert value to JSON")
}
}
}
fn build_virtual_newtype_schema_fn(virtual_ty: Type) -> proc_macro2::TokenStream {
quote! {
fn generate_schema(schema_gen: &::std::cell::RefCell<::vector_config::schema::SchemaGenerator>) -> std::result::Result<::vector_config::schema::SchemaObject, ::vector_config::GenerateError> {
::vector_config::schema::get_or_generate_schema(
&<#virtual_ty as ::vector_config::Configurable>::as_configurable_ref(),
schema_gen,
None,
)
}
}
}
fn build_enum_generate_schema_fn(
container: &Container,
variants: &[Variant<'_>],
) -> proc_macro2::TokenStream {
// First, figure out if we have a potentially "ambiguous" enum schema. This will influence the
// code we generate, which will, at runtime, attempt to figure out if we need to emit an `anyOf`
// schema, rather than a `oneOf` schema, to handle validation of enums where variants overlap in
// ambiguous ways.
let is_potentially_ambiguous = is_enum_schema_potentially_ambiguous(container, variants);
// Now we'll generate the code for building the schema for each individual variant. This will be
// slightly influenced by whether or not we think the enum schema is potentially ambiguous. If
// so, we generate some extra code that populates the necessary data to make the call at runtime.
let mapped_variants = variants
.iter()
// Don't map this variant if it's marked to be skipped for both serialization and deserialization.
.filter(|variant| variant.visible())
.map(|variant| generate_enum_variant_schema(variant, is_potentially_ambiguous));
// Generate a small little code block that will try and vary the schema approach between `anyOf`
// and `oneOf` if we determine that the data in the discriminant map indicates ambiguous variant
// schemas.
//
// If we never generate any entries in the discriminant map, then this will end up just calling
// the `oneOf` method.
let generate_block = quote! {
if ::vector_config::schema::has_ambiguous_discriminants(&discriminant_map) {
Ok(::vector_config::schema::generate_any_of_schema(&subschemas))
} else {
Ok(::vector_config::schema::generate_one_of_schema(&subschemas))
}
};
quote! {
fn generate_schema(schema_gen: &::std::cell::RefCell<::vector_config::schema::SchemaGenerator>) -> std::result::Result<::vector_config::schema::SchemaObject, ::vector_config::GenerateError> {
let mut subschemas = ::std::vec::Vec::new();
let mut discriminant_map = ::std::collections::HashMap::new();
#(#mapped_variants)*
#generate_block
}
}
}
fn is_enum_schema_potentially_ambiguous(container: &Container, variants: &[Variant]) -> bool {
let tagging = container
.tagging()
.expect("enums must always have a tagging mode");
match tagging {
Tagging::None => {
// If we have fewer than two variants, then there's no ambiguity.
if variants.len() < 2 {
return false;
}
// All variants must be struct variants (i.e. named fields) otherwise we cannot
// reasonably determine if they're ambiguous or not.
variants.iter().all(|variant| {
let fields = variant.fields();
!fields.is_empty() && fields.iter().all(|field| field.ident().is_some())
})
}
// All other tagging modes have a discriminant, and so can never be ambiguous.
_ => false,
}
}
fn build_struct_generate_schema_fn(
container: &Container<'_>,
style: &Style,
fields: &[Field<'_>],
) -> proc_macro2::TokenStream {
match style {
Style::Struct => build_named_struct_generate_schema_fn(container, fields),
Style::Tuple => build_tuple_struct_generate_schema_fn(fields),
Style::Newtype => build_newtype_struct_generate_schema_fn(fields),
Style::Unit => panic!("unit structs should be rejected during AST parsing"),
}
}
fn generate_struct_field(field: &Field<'_>) -> proc_macro2::TokenStream {
let field_metadata_ref = Ident::new("field_metadata", Span::call_site());
let field_metadata = generate_field_metadata(&field_metadata_ref, field);
let field_schema_ty = get_field_schema_ty(field);
let spanned_generate_schema = quote_spanned! {field.span()=>
::vector_config::schema::get_or_generate_schema(
&<#field_schema_ty as ::vector_config::Configurable>::as_configurable_ref(),
schema_gen,
Some(#field_metadata_ref),
)?
};
quote! {
#field_metadata
let mut subschema = #spanned_generate_schema;
}
}
fn generate_named_struct_field(
container: &Container<'_>,
field: &Field<'_>,
) -> proc_macro2::TokenStream {
let field_name = field
.ident()
.expect("named struct fields must always have an ident");
let field_schema_ty = get_field_schema_ty(field);
let field_already_contained = format!(
"schema properties already contained entry for `{}`, this should not occur",
field_name
);
let field_key = field.name();
let field_schema = generate_struct_field(field);
// If the field is flattened, we store it into a different list of flattened subschemas vs adding it directly as a
// field via `properties`/`required`.
//
// If any flattened subschemas are present when we generate the struct schema overall, we do the merging of those at
// the end.
let integrate_field = if field.flatten() {
quote! {
flattened_subschemas.push(subschema);
}
} else {
// If there is no default value specified for either the field itself, or the container the
// field is a part of, then we consider it required unless the field type itself is inherently
// optional, such as being `Option<T>`.
let spanned_is_optional = quote_spanned! {field.span()=>
<#field_schema_ty as ::vector_config::Configurable>::is_optional()
};
let maybe_field_required =
if container.default_value().is_none() && field.default_value().is_none() {
Some(quote! {
if !#spanned_is_optional {
assert!(required.insert(#field_key.to_string()), #field_already_contained);
}
})
} else {
None
};
quote! {
if let Some(_) = properties.insert(#field_key.to_string(), subschema) {
panic!(#field_already_contained);
}
#maybe_field_required
}
};
quote! {
{
#field_schema
#integrate_field
}
}
}
fn generate_tuple_struct_field(field: &Field<'_>) -> proc_macro2::TokenStream {
let field_schema = generate_struct_field(field);
quote! {
{
#field_schema
subschemas.push(subschema);
}
}
}
fn build_named_struct_generate_schema_fn(
container: &Container<'_>,
fields: &[Field<'_>],
) -> proc_macro2::TokenStream {
let mapped_fields = fields
.iter()
// Don't map this field if it's marked to be skipped for both serialization and deserialization.
.filter(|field| field.visible())
.map(|field| generate_named_struct_field(container, field));
quote! {
fn generate_schema(schema_gen: &::std::cell::RefCell<::vector_config::schema::SchemaGenerator>) -> std::result::Result<::vector_config::schema::SchemaObject, ::vector_config::GenerateError> {
let mut properties = ::vector_config::indexmap::IndexMap::new();
let mut required = ::std::collections::BTreeSet::new();
let mut flattened_subschemas = ::std::vec::Vec::new();
let metadata = <Self as ::vector_config::Configurable>::metadata();
#(#mapped_fields)*
let had_unflatted_properties = !properties.is_empty();
let additional_properties = None;
let mut schema = ::vector_config::schema::generate_struct_schema(
properties,
required,
additional_properties,
);
// If we have any flattened subschemas, deal with them now.
if !flattened_subschemas.is_empty() {
// A niche case here is if all fields were flattened, which would leave our main
// schema as simply validating that the value is an object, and _nothing_ else.
//
// That's kind of useless, and ends up as noise in the schema, so if we didn't have
// any of our own unflattened properties, then steal the first flattened subschema
// and swap our main schema for it before flattening things overall.
if !had_unflatted_properties {
schema = flattened_subschemas.remove(0);
}
::vector_config::schema::convert_to_flattened_schema(&mut schema, flattened_subschemas);
}
Ok(schema)
}
}
}
fn build_tuple_struct_generate_schema_fn(fields: &[Field<'_>]) -> proc_macro2::TokenStream {
let mapped_fields = fields
.iter()
// Don't map this field if it's marked to be skipped for both serialization and deserialization.
.filter(|field| field.visible())
.map(generate_tuple_struct_field);
quote! {
fn generate_schema(schema_gen: &::std::cell::RefCell<::vector_config::schema::SchemaGenerator>) -> std::result::Result<::vector_config::schema::SchemaObject, ::vector_config::GenerateError> {
let mut subschemas = ::std::collections::Vec::new();
#(#mapped_fields)*
Ok(::vector_config::schema::generate_tuple_schema(&subschemas))
}
}
}
fn build_newtype_struct_generate_schema_fn(fields: &[Field<'_>]) -> proc_macro2::TokenStream {
// Map the fields normally, but we should end up with a single field at the end.
let mut mapped_fields = fields
.iter()
// Don't map this field if it's marked to be skipped for both serialization and deserialization.
.filter(|field| field.visible())
.map(generate_struct_field)
.collect::<Vec<_>>();
if mapped_fields.len() != 1 {
panic!("newtype structs should never have more than one field");
}
let field_schema = mapped_fields.remove(0);
quote! {
fn generate_schema(schema_gen: &::std::cell::RefCell<::vector_config::schema::SchemaGenerator>) -> std::result::Result<::vector_config::schema::SchemaObject, ::vector_config::GenerateError> {
#field_schema
Ok(subschema)
}
}
}
fn generate_container_metadata(
meta_ident: &Ident,
container: &Container<'_>,
) -> proc_macro2::TokenStream {
let maybe_title = get_metadata_title(meta_ident, container.title());
let maybe_description = get_metadata_description(meta_ident, container.description());
let maybe_default_value = get_metadata_default_value(meta_ident, container.default_value());
let maybe_deprecated = get_metadata_deprecated(meta_ident, container.deprecated());
let maybe_custom_attributes = get_metadata_custom_attributes(meta_ident, container.metadata());
// We add a special metadata that informs consumers of the schema what the "tagging mode" of
// this enum is. This is important because when we're using the schema to generate
// documentation, it can be hard to generate something that is as succinct as how you might
// otherwise describe the configuration behavior using natural language. Additionally, we
// typically allow deserialization such that fields are overlapped, and if variants had, for
// example, 3 shared fields between all variants, and each variant only had 1 unique field, we
// wouldn't want to relist all the shared fields per variant.... we just want to be able to
// describe which variant has to be used for its unique (variant specific) fields to be
// relevant.
let enum_metadata_attrs = container
.tagging()
.map(|tagging| tagging.as_enum_metadata());
let enum_metadata =
get_metadata_custom_attributes(meta_ident, enum_metadata_attrs.into_iter().flatten());
quote! {
let mut #meta_ident = ::vector_config::Metadata::default();
#maybe_title
#maybe_description
#maybe_default_value
#maybe_deprecated
#maybe_custom_attributes
#enum_metadata
}
}
fn generate_field_metadata(meta_ident: &Ident, field: &Field<'_>) -> proc_macro2::TokenStream {
let field_ty = field.ty();
let field_schema_ty = get_field_schema_ty(field);
let maybe_title = get_metadata_title(meta_ident, field.title());
let maybe_description = get_metadata_description(meta_ident, field.description());
let maybe_clear_title_description = field
.title()
.or_else(|| field.description())
.is_some()
.then(|| {
quote! {
// Fields with a title/description of their own cannot merge with the title/description
// of the field type itself, as this will generally lead to confusing output, so we
// explicitly clear the title/description first if we're about to set our own
// title/description.
#meta_ident.clear_title();
#meta_ident.clear_description();
}
});
let maybe_default_value = if field_ty != field_schema_ty {
get_metadata_default_value_delegated(meta_ident, field_schema_ty, field.default_value())
} else {
get_metadata_default_value(meta_ident, field.default_value())
};
let maybe_deprecated = get_metadata_deprecated(meta_ident, field.deprecated());
let maybe_deprecated_message =
get_metadata_deprecated_message(meta_ident, field.deprecated_message());
let maybe_transparent = get_metadata_transparent(meta_ident, field.transparent());
let maybe_validation = get_metadata_validation(meta_ident, field.validation());
let maybe_custom_attributes = get_metadata_custom_attributes(meta_ident, field.metadata());
quote! {
let mut #meta_ident = ::vector_config::Metadata::default();
#maybe_clear_title_description
#maybe_title
#maybe_description
#maybe_default_value
#maybe_deprecated
#maybe_deprecated_message
#maybe_transparent
#maybe_validation
#maybe_custom_attributes
}
}
fn generate_variant_metadata(
meta_ident: &Ident,
variant: &Variant<'_>,
) -> proc_macro2::TokenStream {
let maybe_title = get_metadata_title(meta_ident, variant.title());
let maybe_description = get_metadata_description(meta_ident, variant.description());
let maybe_deprecated = get_metadata_deprecated(meta_ident, variant.deprecated());
// We have to mark variants as transparent, so that if we're dealing with an untagged enum, we
// don't panic if their description is intentionally left out.
let maybe_transparent =
get_metadata_transparent(meta_ident, variant.tagging() == &Tagging::None);
let maybe_custom_attributes = get_metadata_custom_attributes(meta_ident, variant.metadata());
// We add a special metadata key (`logical_name`) that informs consumers of the schema what the
// variant name is for this variant's subschema. While the doc comments being coerced into title
// and/or description are typically good enough, sometimes we need a more mechanical mapping of
// the variant's name since shoving it into the title would mean doc comments with redundant
// information.
//
// You can think of this as an enum-specific additional title.
let logical_name_attrs = vec![LazyCustomAttribute::kv(
"logical_name",
variant.ident().to_string(),
)];
let variant_logical_name =
get_metadata_custom_attributes(meta_ident, logical_name_attrs.into_iter());
// We specifically use `()` as the type here because we need to generate the metadata for this
// variant, but there's no unique concrete type for a variant, only the type of the enum
// container it exists within. We also don't want to use the metadata of the enum container, as
// it might have values that would conflict with the metadata of this specific variant.
quote! {
let mut #meta_ident = ::vector_config::Metadata::default();
#maybe_title
#maybe_description
#maybe_deprecated
#maybe_transparent
#maybe_custom_attributes
#variant_logical_name
}
}
fn generate_variant_tag_metadata(
meta_ident: &Ident,
variant: &Variant<'_>,
) -> proc_macro2::TokenStream {
// For enum variant tags, all we care about is shuttling the title/description of the variant
// itself along with the tag field to make downstream consumption and processing easier.
let maybe_title = get_metadata_title(meta_ident, variant.title());
let maybe_description = get_metadata_description(meta_ident, variant.description());
// We specifically use `()` as the type here because we need to generate the metadata for this
// variant, but there's no unique concrete type for a variant, only the type of the enum
// container it exists within. We also don't want to use the metadata of the enum container, as
// it might have values that would conflict with the metadata of this specific variant.
quote! {
let mut #meta_ident = ::vector_config::Metadata::default();
#maybe_title
#maybe_description
}
}
fn get_metadata_title(
meta_ident: &Ident,
title: Option<&String>,
) -> Option<proc_macro2::TokenStream> {
title.map(|title| {
quote! {
#meta_ident.set_title(#title);
}
})
}
fn get_metadata_description(
meta_ident: &Ident,
description: Option<&String>,
) -> Option<proc_macro2::TokenStream> {
description.map(|description| {
quote! {
#meta_ident.set_description(#description);
}
})
}
fn get_metadata_default_value(
meta_ident: &Ident,
default_value: Option<ExprPath>,
) -> Option<proc_macro2::TokenStream> {
default_value.map(|value| {
quote! {
#meta_ident.set_default_value(#value());
}
})
}
fn get_metadata_default_value_delegated(
meta_ident: &Ident,
default_ty: &syn::Type,
default_value: Option<ExprPath>,
) -> Option<proc_macro2::TokenStream> {
default_value.map(|value| {
let default_ty = get_ty_for_expr_pos(default_ty);
quote! {
#meta_ident.set_default_value(#default_ty::from(#value()));
}
})
}
fn get_metadata_deprecated(
meta_ident: &Ident,
deprecated: bool,
) -> Option<proc_macro2::TokenStream> {
deprecated.then(|| {
quote! {
#meta_ident.set_deprecated();
}
})
}
fn get_metadata_deprecated_message(
meta_ident: &Ident,
message: Option<&String>,
) -> Option<proc_macro2::TokenStream> {
message.map(|message| {
quote! {
#meta_ident.set_deprecated_message(#message);
}
})
}
fn get_metadata_transparent(
meta_ident: &Ident,
transparent: bool,
) -> Option<proc_macro2::TokenStream> {
transparent.then(|| {
quote! {
#meta_ident.set_transparent();
}
})
}
fn get_metadata_validation(
meta_ident: &Ident,
validation: &[Validation],
) -> proc_macro2::TokenStream {
let mapped_validation = validation
.iter()
.map(|v| quote! { #meta_ident.add_validation(#v); });
quote! {
#(#mapped_validation)*
}
}
fn get_metadata_custom_attributes(
meta_ident: &Ident,
custom_attributes: impl Iterator<Item = LazyCustomAttribute>,
) -> proc_macro2::TokenStream {
let mapped_custom_attributes = custom_attributes
.map(|attr| match attr {
LazyCustomAttribute::Flag(key) => quote! {
#meta_ident.add_custom_attribute(::vector_config::attributes::CustomAttribute::flag(#key));
},
LazyCustomAttribute::KeyValue { key, value } => quote! {
#meta_ident.add_custom_attribute(::vector_config::attributes::CustomAttribute::kv(
#key, #value
));
},
});
quote! {
#(#mapped_custom_attributes)*
}
}
fn get_field_schema_ty<'a>(field: &'a Field<'a>) -> &'a syn::Type {
// If there's a delegated type being used for field (de)serialization, that's ultimately the type
// we use to declare the schema, because we have to generate the schema for whatever type is
// actually being (de)serialized, not the final type that the intermediate value ends up getting
// converted to.
//
// Otherwise, we just use the actual field type.
field.delegated_ty().unwrap_or_else(|| field.ty())
}
fn generate_named_enum_field(field: &Field<'_>) -> proc_macro2::TokenStream {
let field_name = field.ident().expect("field should be named");
let field_ty = field.ty();
let field_already_contained = format!(
"schema properties already contained entry for `{}`, this should not occur",
field_name
);
let field_key = field.name().to_string();
let field_schema = generate_struct_field(field);
// Fields that have no default value are inherently required. Unlike fields on a normal
// struct, we can't derive a default value for an individual field because `serde`
// doesn't allow even specifying a default value for an enum overall, only structs.
let spanned_is_optional = quote_spanned! {field.span()=>
<#field_ty as ::vector_config::Configurable>::is_optional()
};
let maybe_field_required = if field.default_value().is_none() {
Some(quote! {
if !#spanned_is_optional {
if !required.insert(#field_key.to_string()) {
panic!(#field_already_contained);
}
}
})
} else {
None
};
quote! {
{
#field_schema
if let Some(_) = properties.insert(#field_key.to_string(), subschema) {
panic!(#field_already_contained);
}
#maybe_field_required
}
}
}
fn generate_enum_struct_named_variant_schema(
variant: &Variant<'_>,
post_fields: Option<proc_macro2::TokenStream>,
is_potentially_ambiguous: bool,
) -> proc_macro2::TokenStream {
let mapped_fields = variant.fields().iter().map(generate_named_enum_field);
// If this variant is part of a potentially ambiguous enum schema, we add this variant's
// required fields to the discriminant map, keyed off of the variant name.
let maybe_fill_discriminant_map = is_potentially_ambiguous.then(|| {
let variant_name = variant.ident().to_string();
quote! {
discriminant_map.insert(#variant_name, required.clone());
}
});
quote! {
{
let mut properties = ::vector_config::indexmap::IndexMap::new();
let mut required = ::std::collections::BTreeSet::new();
#(#mapped_fields)*
#post_fields
#maybe_fill_discriminant_map
::vector_config::schema::generate_struct_schema(
properties,
required,
None
)
}
}
}
fn generate_enum_newtype_struct_variant_schema(variant: &Variant<'_>) -> proc_macro2::TokenStream {
// When we only have a single unnamed field, we basically just treat it as a
// passthrough, and we generate the schema for that field directly, without any
// metadata or anything, since things like defaults can't travel from the enum
// container to a specific variant anyways.
let field = variant.fields().first().expect("must exist");
let field_schema = generate_struct_field(field);
quote! {
{
#field_schema
subschema
}
}
}
fn generate_enum_variant_tag_schema(variant: &Variant<'_>) -> proc_macro2::TokenStream {
let variant_name = variant.name();
let apply_variant_tag_metadata = generate_enum_variant_tag_apply_metadata(variant);
quote! {
{
let mut tag_subschema = ::vector_config::schema::generate_const_string_schema(#variant_name.to_string());
#apply_variant_tag_metadata
tag_subschema
}
}
}
fn generate_enum_variant_schema(
variant: &Variant<'_>,
is_potentially_ambiguous: bool,
) -> proc_macro2::TokenStream {
// For the sake of all examples below, we'll use JSON syntax to represent the following enum
// variants:
//
// enum ExampleEnum {
// Struct { some_field: bool },
// Unnamed(bool),
// Unit,
// }
let variant_name = variant.name();
let variant_schema = match variant.tagging() {
// The variant is represented "externally" by wrapping the contents of the variant as an
// object pointed to by a property whose name is the name of the variant.
//
// This is when the rendered output looks like the following:
//
// # Struct form.
// { "field_using_enum": { "VariantName": { "some_field": false } } }
//
// # Struct form with unnamed field.
// { "field_using_enum": { "VariantName": false } }
//
// # Unit form.
// { "field_using_enum": "VariantName" }
Tagging::External => {
let (wrapped, variant_schema) = match variant.style() {
Style::Struct => (
true,
generate_enum_struct_named_variant_schema(variant, None, false),
),
Style::Tuple => panic!("tuple variants should be rejected during AST parsing"),
Style::Newtype => (true, generate_enum_newtype_struct_variant_schema(variant)),
Style::Unit => (false, generate_enum_variant_tag_schema(variant)),
};
// In external mode, we don't wrap the schema for unit variants, because they're
// interpreted directly as the value of the field using the enum.
//
// TODO: we can maybe reuse the existing struct schema gen stuff here, but we'd need
// a way to force being required + customized metadata
if wrapped {
generate_single_field_struct_schema(variant_name, variant_schema)
} else {
variant_schema
}
}
// The variant is represented "internally" by adding a new property to the contents of the
// variant whose name is the value of `tag` and must match the name of the variant.
//
// This is when the rendered output looks like the following:
//
// # Struct form.
// { "field_using_enum": { "<tag>": "VariantName", "some_field": false } }
//
// # Struct form with unnamed field is not valid here. See comments below.
//
// # Unit form.
// { "field_using_enum": { "<tag>": "VariantName" } }
Tagging::Internal { tag } => match variant.style() {
Style::Struct => {
let tag_already_contained = format!("enum tag `{}` already contained as a field in variant; tag cannot overlap with any fields in any variant", tag);
// Just generate the tag field directly and pass it along to be included in the
// struct schema.
let tag_schema = generate_enum_variant_tag_schema(variant);
let tag_field = quote! {
{
if let Some(_) = properties.insert(#tag.to_string(), #tag_schema) {
panic!(#tag_already_contained);
}
if !required.insert(#tag.to_string()) {
panic!(#tag_already_contained);
}
}
};
generate_enum_struct_named_variant_schema(variant, Some(tag_field), false)
}
Style::Tuple => panic!("tuple variants should be rejected during AST parsing"),
Style::Newtype => {
// We have to delegate viability to `serde`, essentially, because using internal tagging for a newtype
// variant is only possible when the inner field is a struct or map, and we can't access that type of
// information here, which is why `serde` does it at compile-time.
// As such, we generate the schema for the single field, like we would normally do for a newtype
// variant, and then we follow the struct flattening logic where we layer on our tag field schema on the
// schema of the wrapped field... and since it has to be a struct or map to be valid for `serde`, that
// means it will also be an object schema in both cases, which means our flattening logic will be
// correct if the caller is doing The Right Thing (tm).
let newtype_schema = generate_enum_newtype_struct_variant_schema(variant);
let tag_schema = generate_enum_variant_tag_schema(variant);
quote! {
let tag_schema = ::vector_config::schema::generate_internal_tagged_variant_schema(#tag.to_string(), #tag_schema);
let mut flattened_subschemas = ::std::vec::Vec::new();
flattened_subschemas.push(tag_schema);
let mut newtype_schema = #newtype_schema;
::vector_config::schema::convert_to_flattened_schema(&mut newtype_schema, flattened_subschemas);
newtype_schema
}
}
Style::Unit => {
// Internally-tagged unit variants are basically just a play on externally-tagged
// struct variants.
let variant_schema = generate_enum_variant_tag_schema(variant);
generate_single_field_struct_schema(tag, variant_schema)
}
},
// The variant is represented "adjacent" to the content, such that the variant name is in a
// field whose name is the value of `tag` and the content of the variant is in a field whose
// name is the value of `content`.
//
// This is when the rendered output looks like the following:
//
// # Struct form.
// { "field_using_enum": { "<tag>": "VariantName", "<content>": { "some_field": false } } }
//
// # Struct form with unnamed field.
// { "field_using_enum": { "<tag>": "VariantName", "<content>": false } }
//
// # Unit form.
// { "field_using_enum": { "<tag>": "VariantName" } }
Tagging::Adjacent { tag, content } => {
// For struct-type variants, just generate their schema as normal, and we'll wrap it up
// in a new object. For unit variants, adjacent tagging is identical to internal
// tagging, so we handle that one by hand.
let tag_schema = generate_enum_variant_tag_schema(variant);
let maybe_content_schema = match variant.style() {
Style::Struct => Some(generate_enum_struct_named_variant_schema(
variant, None, false,
)),
Style::Tuple => panic!("tuple variants should be rejected during AST parsing"),
Style::Newtype => Some(generate_enum_newtype_struct_variant_schema(variant)),
Style::Unit => None,
}
.map(|content_schema| {
quote! {
wrapper_properties.insert(#content.to_string(), #content_schema);
wrapper_required.insert(#content.to_string());
}
});
quote! {
let mut wrapper_properties = ::vector_config::indexmap::IndexMap::new();
let mut wrapper_required = ::std::collections::BTreeSet::new();
wrapper_properties.insert(#tag.to_string(), #tag_schema);
wrapper_required.insert(#tag.to_string());
#maybe_content_schema
::vector_config::schema::generate_struct_schema(
wrapper_properties,
wrapper_required,
None
)
}
}
Tagging::None => {
// This is simply when it's a free-for-all and `serde` tries to deserialize the data as
// each variant until it finds one that can deserialize the data correctly. Essentially,
// we encode the variant solely based on its contents, which for a unit variant, would
// be nothing: a literal `null` in JSON.
//
// Accordingly, there is a higher-level check before we get here that yells at the user
// that using `#[serde(untagged)]` with an enum where some variants that have
// duplicate contents, compared to their siblings, is not allowed because doing so
// provides unstable deserialization.
//
// This is when the rendered output looks like the following:
//
// # Struct form.
// { "field_using_enum": { "some_field": false } }
//
// # Struct form with unnamed field.
// { "field_using_enum": false }
//
// # Unit form.
// { "field_using_enum": null }
//
// TODO: actually implement the aforementioned higher-level check
match variant.style() {
Style::Struct => generate_enum_struct_named_variant_schema(
variant,
None,
is_potentially_ambiguous,
),
Style::Tuple => panic!("tuple variants should be rejected during AST parsing"),
Style::Newtype => generate_enum_newtype_struct_variant_schema(variant),
Style::Unit => quote! { ::vector_config::schema::generate_null_schema() },
}
}
};
generate_enum_variant_subschema(variant, variant_schema)
}
fn generate_single_field_struct_schema(
property_name: &str,
property_schema: proc_macro2::TokenStream,
) -> proc_macro2::TokenStream {
quote! {
{
let mut wrapper_properties = ::vector_config::indexmap::IndexMap::new();
let mut wrapper_required = ::std::collections::BTreeSet::new();
wrapper_properties.insert(#property_name.to_string(), #property_schema);
wrapper_required.insert(#property_name.to_string());
::vector_config::schema::generate_struct_schema(
wrapper_properties,
wrapper_required,
None
)
}
}
}
fn generate_enum_variant_apply_metadata(variant: &Variant<'_>) -> proc_macro2::TokenStream {
let variant_metadata_ref = Ident::new("variant_metadata", Span::call_site());
let variant_metadata = generate_variant_metadata(&variant_metadata_ref, variant);
quote! {
#variant_metadata
::vector_config::schema::apply_base_metadata(&mut subschema, #variant_metadata_ref);
}
}
fn generate_enum_variant_tag_apply_metadata(variant: &Variant<'_>) -> proc_macro2::TokenStream {
let variant_tag_metadata_ref = Ident::new("variant_tag_metadata", Span::call_site());
let variant_tag_metadata = generate_variant_tag_metadata(&variant_tag_metadata_ref, variant);
quote! {
#variant_tag_metadata
::vector_config::schema::apply_base_metadata(&mut tag_subschema, #variant_tag_metadata_ref);
}
}
fn generate_enum_variant_subschema(
variant: &Variant<'_>,
variant_schema: proc_macro2::TokenStream,
) -> proc_macro2::TokenStream {
let apply_variant_metadata = generate_enum_variant_apply_metadata(variant);
quote! {
{
let mut subschema = { #variant_schema };
#apply_variant_metadata
subschemas.push(subschema);
}
}
}
/// Gets a type token suitable for use in expression position.
///
/// Normally, we refer to types with generic type parameters using their condensed form: `T<...>`.
/// Sometimes, however, we must refer to them with their disambiguated form: `T::<...>`. This is due
/// to a limitation in syntax parsing between types in statement versus expression position.
///
/// Statement position would be somewhere like declaring a field on a struct, where using angle
/// brackets has no ambiguous meaning, as you can't compare two items as part of declaring a struct
/// field. Conversely, expression position implies anywhere we could normally provide an expression,
/// and expressions can certainly contain comparisons. As such, we need to use the disambiguated
/// form in expression position.
///
/// While most commonly used for passing generic type parameters to functions/methods themselves,
/// this is also known as the "turbofish" syntax.
fn get_ty_for_expr_pos(ty: &syn::Type) -> syn::Type {
match ty {
syn::Type::Path(tp) => {
let mut new_tp = tp.clone();
for segment in new_tp.path.segments.iter_mut() {
if let PathArguments::AngleBracketed(ab) = &mut segment.arguments {
ab.colon2_token = Some(PathSep::default());
}
}
syn::Type::Path(new_tp)
}
_ => ty.clone(),
}
}