1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
use core::fmt;
use std::collections::BTreeSet;
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use vector_common::byte_size_of::ByteSizeOf;
use vector_config::configurable_component;
use crate::{float_eq, metrics::AgentDDSketch};
use super::{samples_to_buckets, write_list, write_word};
const INFINITY: &str = "inf";
const NEG_INFINITY: &str = "-inf";
const NAN: &str = "NaN";
/// Metric value.
#[configurable_component]
#[derive(Clone, Debug)]
#[serde(rename_all = "snake_case")]
/// Container for the actual value of a metric.
pub enum MetricValue {
/// A cumulative numerical value that can only increase or be reset to zero.
Counter {
/// The value of the counter.
value: f64,
},
/// A single numerical value that can arbitrarily go up and down.
Gauge {
/// The value of the gauge.
value: f64,
},
/// A set of (unordered) unique values for a key.
Set {
/// The values in the set.
values: BTreeSet<String>,
},
/// A set of observations without any aggregation or sampling.
Distribution {
/// The observed values within this distribution.
samples: Vec<Sample>,
/// The type of statistics to derive for this distribution.
statistic: StatisticKind,
},
/// A set of observations which are counted into buckets.
///
/// It also contains the total count of all observations and their sum to allow calculating the mean.
AggregatedHistogram {
/// The buckets within this histogram.
buckets: Vec<Bucket>,
/// The total number of observations contained within this histogram.
count: u64,
/// The sum of all observations contained within this histogram.
sum: f64,
},
/// A set of observations which are represented by quantiles.
///
/// Each quantile contains the upper value of the quantile (0 <= φ <= 1). It also contains the total count of all
/// observations and their sum to allow calculating the mean.
AggregatedSummary {
/// The quantiles measured from this summary.
quantiles: Vec<Quantile>,
/// The total number of observations contained within this summary.
count: u64,
/// The sum of all observations contained within this histogram.
sum: f64,
},
/// A data structure that can answer questions about the cumulative distribution of the contained samples in
/// space-efficient way.
///
/// Sketches represent the data in a way that queries over it have bounded error guarantees without needing to hold
/// every single sample in memory. They are also, typically, able to be merged with other sketches of the same type
/// such that client-side _and_ server-side aggregation can be accomplished without loss of accuracy in the queries.
Sketch {
#[configurable(derived)]
sketch: MetricSketch,
},
}
impl MetricValue {
/// Returns `true` if the value is empty.
///
/// Emptiness is dictated by whether or not the value has any samples or measurements present. Consequently, scalar
/// values (counter, gauge) are never considered empty.
pub fn is_empty(&self) -> bool {
match self {
MetricValue::Counter { .. } | MetricValue::Gauge { .. } => false,
MetricValue::Set { values } => values.is_empty(),
MetricValue::Distribution { samples, .. } => samples.is_empty(),
MetricValue::AggregatedSummary { count, .. }
| MetricValue::AggregatedHistogram { count, .. } => *count == 0,
MetricValue::Sketch { sketch } => sketch.is_empty(),
}
}
/// Gets the name of this value as a string.
///
/// This maps to the name of the enum variant itself.
pub fn as_name(&self) -> &'static str {
match self {
Self::Counter { .. } => "counter",
Self::Gauge { .. } => "gauge",
Self::Set { .. } => "set",
Self::Distribution { .. } => "distribution",
Self::AggregatedHistogram { .. } => "aggregated histogram",
Self::AggregatedSummary { .. } => "aggregated summary",
Self::Sketch { sketch } => sketch.as_name(),
}
}
/// Converts a distribution to an aggregated histogram.
///
/// Histogram bucket bounds are based on `buckets`, where the value is the upper bound of the bucket. Samples will
/// be thus be ordered in a "less than" fashion: if the given sample is less than or equal to a given bucket's upper
/// bound, it will be counted towards that bucket at the given sample rate.
///
/// If this value is not a distribution, then `None` is returned. Otherwise,
/// `Some(MetricValue::AggregatedHistogram)` is returned.
pub fn distribution_to_agg_histogram(&self, buckets: &[f64]) -> Option<MetricValue> {
match self {
MetricValue::Distribution { samples, .. } => {
let (buckets, count, sum) = samples_to_buckets(samples, buckets);
Some(MetricValue::AggregatedHistogram {
buckets,
count,
sum,
})
}
_ => None,
}
}
/// Converts a distribution to a sketch.
///
/// This conversion specifically use the `AgentDDSketch` sketch variant, in the default configuration that matches
/// the Datadog Agent, parameter-wise.
///
/// If this value is not a distribution, then `None` is returned. Otherwise, `Some(MetricValue::Sketch)` is
/// returned.
pub fn distribution_to_sketch(&self) -> Option<MetricValue> {
match self {
MetricValue::Distribution { samples, .. } => {
let mut sketch = AgentDDSketch::with_agent_defaults();
for sample in samples {
sketch.insert_n(sample.value, sample.rate);
}
Some(MetricValue::Sketch {
sketch: MetricSketch::AgentDDSketch(sketch),
})
}
_ => None,
}
}
/// Zeroes out all the values contained in this value.
///
/// This keeps all the bucket/value vectors for the histogram and summary metric types intact while zeroing the
/// counts. Distribution metrics are emptied of all their values.
pub fn zero(&mut self) {
match self {
Self::Counter { value } | Self::Gauge { value } => *value = 0.0,
Self::Set { values } => values.clear(),
Self::Distribution { samples, .. } => samples.clear(),
Self::AggregatedHistogram {
buckets,
count,
sum,
} => {
for bucket in buckets {
bucket.count = 0;
}
*count = 0;
*sum = 0.0;
}
Self::AggregatedSummary {
quantiles,
sum,
count,
} => {
for quantile in quantiles {
quantile.value = 0.0;
}
*count = 0;
*sum = 0.0;
}
Self::Sketch { sketch } => match sketch {
MetricSketch::AgentDDSketch(ddsketch) => {
ddsketch.clear();
}
},
}
}
/// Adds another value to this one.
///
/// If the other value is not the same type, or if they are but their defining characteristics of the value are
/// different (i.e. aggregated histograms with different bucket layouts), then `false` is returned. Otherwise,
/// `true` is returned.
#[must_use]
pub fn add(&mut self, other: &Self) -> bool {
match (self, other) {
(Self::Counter { ref mut value }, Self::Counter { value: value2 })
| (Self::Gauge { ref mut value }, Self::Gauge { value: value2 }) => {
*value += value2;
true
}
(Self::Set { ref mut values }, Self::Set { values: values2 }) => {
values.extend(values2.iter().map(Into::into));
true
}
(
Self::Distribution {
ref mut samples,
statistic: statistic_a,
},
Self::Distribution {
samples: samples2,
statistic: statistic_b,
},
) if statistic_a == statistic_b => {
samples.extend_from_slice(samples2);
true
}
(
Self::AggregatedHistogram {
ref mut buckets,
ref mut count,
ref mut sum,
},
Self::AggregatedHistogram {
buckets: buckets2,
count: count2,
sum: sum2,
},
) if buckets.len() == buckets2.len()
&& buckets
.iter()
.zip(buckets2.iter())
.all(|(b1, b2)| b1.upper_limit == b2.upper_limit) =>
{
for (b1, b2) in buckets.iter_mut().zip(buckets2) {
b1.count += b2.count;
}
*count += count2;
*sum += sum2;
true
}
(Self::Sketch { sketch }, Self::Sketch { sketch: sketch2 }) => {
match (sketch, sketch2) {
(
MetricSketch::AgentDDSketch(ddsketch),
MetricSketch::AgentDDSketch(ddsketch2),
) => ddsketch.merge(ddsketch2).is_ok(),
}
}
_ => false,
}
}
/// Subtracts another value from this one.
///
/// If the other value is not the same type, or if they are but their defining characteristics of the value are
/// different (i.e. aggregated histograms with different bucket layouts), then `false` is returned. Otherwise,
/// `true` is returned.
#[must_use]
pub fn subtract(&mut self, other: &Self) -> bool {
match (self, other) {
// Counters are monotonic, they should _never_ go backwards unless reset to 0 due to
// process restart, etc. Thus, being able to generate negative deltas would violate
// that. Whether a counter is reset to 0, or if it incorrectly warps to a previous
// value, it doesn't matter: we're going to reinitialize it.
(Self::Counter { ref mut value }, Self::Counter { value: value2 })
if *value >= *value2 =>
{
*value -= value2;
true
}
(Self::Gauge { ref mut value }, Self::Gauge { value: value2 }) => {
*value -= value2;
true
}
(Self::Set { ref mut values }, Self::Set { values: values2 }) => {
for item in values2 {
values.remove(item);
}
true
}
(
Self::Distribution {
ref mut samples,
statistic: statistic_a,
},
Self::Distribution {
samples: samples2,
statistic: statistic_b,
},
) if statistic_a == statistic_b => {
// This is an ugly algorithm, but the use of a HashSet or equivalent is complicated by neither Hash nor
// Eq being implemented for the f64 part of Sample.
//
// TODO: This logic does not work if a value is repeated within a distribution. For example, if the
// current distribution is [1, 2, 3, 1, 2, 3] and the previous distribution is [1, 2, 3], this would
// yield a result of [].
//
// The only reasonable way we could provide subtraction, I believe, is if we required the ordering to
// stay the same, such that we would just take the samples from the non-overlapping region as the delta.
// In the above example: length of samples from `other` would be 3, so delta would be
// `self.samples[3..]`.
*samples = samples
.iter()
.copied()
.filter(|sample| samples2.iter().all(|sample2| sample != sample2))
.collect();
true
}
// Aggregated histograms, at least in Prometheus, are also typically monotonic in terms of growth.
// Subtracting them in reverse -- e.g.. subtracting a newer one with more values from an older one with
// fewer values -- would not make sense, since buckets should never be able to have negative counts... and
// it's not clear that a saturating subtraction is technically correct either. Instead, we avoid having to
// make that decision, and simply force the metric to be reinitialized.
(
Self::AggregatedHistogram {
ref mut buckets,
ref mut count,
ref mut sum,
},
Self::AggregatedHistogram {
buckets: buckets2,
count: count2,
sum: sum2,
},
) if *count >= *count2
&& buckets.len() == buckets2.len()
&& buckets
.iter()
.zip(buckets2.iter())
.all(|(b1, b2)| b1.upper_limit == b2.upper_limit) =>
{
for (b1, b2) in buckets.iter_mut().zip(buckets2) {
b1.count -= b2.count;
}
*count -= count2;
*sum -= sum2;
true
}
_ => false,
}
}
}
impl ByteSizeOf for MetricValue {
fn allocated_bytes(&self) -> usize {
match self {
Self::Counter { .. } | Self::Gauge { .. } => 0,
Self::Set { values } => values.allocated_bytes(),
Self::Distribution { samples, .. } => samples.allocated_bytes(),
Self::AggregatedHistogram { buckets, .. } => buckets.allocated_bytes(),
Self::AggregatedSummary { quantiles, .. } => quantiles.allocated_bytes(),
Self::Sketch { sketch } => sketch.allocated_bytes(),
}
}
}
impl PartialEq for MetricValue {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Counter { value: l_value }, Self::Counter { value: r_value })
| (Self::Gauge { value: l_value }, Self::Gauge { value: r_value }) => {
float_eq(*l_value, *r_value)
}
(Self::Set { values: l_values }, Self::Set { values: r_values }) => {
l_values == r_values
}
(
Self::Distribution {
samples: l_samples,
statistic: l_statistic,
},
Self::Distribution {
samples: r_samples,
statistic: r_statistic,
},
) => l_samples == r_samples && l_statistic == r_statistic,
(
Self::AggregatedHistogram {
buckets: l_buckets,
count: l_count,
sum: l_sum,
},
Self::AggregatedHistogram {
buckets: r_buckets,
count: r_count,
sum: r_sum,
},
) => l_buckets == r_buckets && l_count == r_count && float_eq(*l_sum, *r_sum),
(
Self::AggregatedSummary {
quantiles: l_quantiles,
count: l_count,
sum: l_sum,
},
Self::AggregatedSummary {
quantiles: r_quantiles,
count: r_count,
sum: r_sum,
},
) => l_quantiles == r_quantiles && l_count == r_count && float_eq(*l_sum, *r_sum),
(Self::Sketch { sketch: l_sketch }, Self::Sketch { sketch: r_sketch }) => {
l_sketch == r_sketch
}
_ => false,
}
}
}
impl fmt::Display for MetricValue {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match &self {
MetricValue::Counter { value } | MetricValue::Gauge { value } => {
write!(fmt, "{value}")
}
MetricValue::Set { values } => {
write_list(fmt, " ", values.iter(), |fmt, value| write_word(fmt, value))
}
MetricValue::Distribution { samples, statistic } => {
write!(
fmt,
"{} ",
match statistic {
StatisticKind::Histogram => "histogram",
StatisticKind::Summary => "summary",
}
)?;
write_list(fmt, " ", samples, |fmt, sample| {
write!(fmt, "{}@{}", sample.rate, sample.value)
})
}
MetricValue::AggregatedHistogram {
buckets,
count,
sum,
} => {
write!(fmt, "count={count} sum={sum} ")?;
write_list(fmt, " ", buckets, |fmt, bucket| {
write!(fmt, "{}@{}", bucket.count, bucket.upper_limit)
})
}
MetricValue::AggregatedSummary {
quantiles,
count,
sum,
} => {
write!(fmt, "count={count} sum={sum} ")?;
write_list(fmt, " ", quantiles, |fmt, quantile| {
write!(fmt, "{}@{}", quantile.quantile, quantile.value)
})
}
MetricValue::Sketch { sketch } => {
let quantiles = [0.5, 0.75, 0.9, 0.99]
.iter()
.map(|q| Quantile {
quantile: *q,
value: 0.0,
})
.collect::<Vec<_>>();
match sketch {
MetricSketch::AgentDDSketch(ddsketch) => {
write!(
fmt,
"count={} sum={:?} min={:?} max={:?} avg={:?} ",
ddsketch.count(),
ddsketch.sum(),
ddsketch.min(),
ddsketch.max(),
ddsketch.avg()
)?;
write_list(fmt, " ", quantiles, |fmt, q| {
write!(
fmt,
"{}={:?}",
q.to_percentile_string(),
ddsketch.quantile(q.quantile)
)
})
}
}
}
}
}
}
impl From<AgentDDSketch> for MetricValue {
fn from(ddsketch: AgentDDSketch) -> Self {
MetricValue::Sketch {
sketch: MetricSketch::AgentDDSketch(ddsketch),
}
}
}
// Currently, VRL can only read the type of the value and doesn't consider any actual metric values.
#[cfg(feature = "vrl")]
impl From<MetricValue> for vrl::value::Value {
fn from(value: MetricValue) -> Self {
value.as_name().into()
}
}
/// Type of statistics to generate for a distribution.
#[configurable_component]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd)]
#[serde(rename_all = "snake_case")]
pub enum StatisticKind {
/// A histogram representation.
Histogram,
/// Corresponds to Datadog's Distribution Metric
/// <https://docs.datadoghq.com/developers/metrics/types/?tab=distribution#definition>
Summary,
}
/// A generalized metrics sketch.
#[configurable_component]
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum MetricSketch {
/// [DDSketch][ddsketch] implementation based on the [Datadog Agent][ddagent].
///
/// While DDSketch has open-source implementations based on the white paper, the version used in
/// the Datadog Agent itself is subtly different. This version is suitable for sending directly
/// to Datadog's sketch ingest endpoint.
///
/// [ddsketch]: https://www.vldb.org/pvldb/vol12/p2195-masson.pdf
/// [ddagent]: https://github.com/DataDog/datadog-agent
AgentDDSketch(AgentDDSketch),
}
impl MetricSketch {
/// Returns `true` if the sketch is empty.
pub fn is_empty(&self) -> bool {
match self {
MetricSketch::AgentDDSketch(ddsketch) => ddsketch.is_empty(),
}
}
/// Gets the name of the sketch as a string.
///
/// This maps to the name of the enum variant itself.
pub fn as_name(&self) -> &'static str {
match self {
Self::AgentDDSketch(_) => "agent dd sketch",
}
}
}
impl ByteSizeOf for MetricSketch {
fn allocated_bytes(&self) -> usize {
match self {
Self::AgentDDSketch(ddsketch) => ddsketch.allocated_bytes(),
}
}
}
// Currently, VRL can only read the type of the value and doesn't consider ny actual metric values.
#[cfg(feature = "vrl")]
impl From<MetricSketch> for vrl::value::Value {
fn from(value: MetricSketch) -> Self {
value.as_name().into()
}
}
/// A single observation.
#[configurable_component]
#[derive(Clone, Copy, Debug)]
pub struct Sample {
/// The value of the observation.
pub value: f64,
/// The rate at which the value was observed.
pub rate: u32,
}
impl PartialEq for Sample {
fn eq(&self, other: &Self) -> bool {
self.rate == other.rate && float_eq(self.value, other.value)
}
}
impl ByteSizeOf for Sample {
fn allocated_bytes(&self) -> usize {
0
}
}
/// Custom serialization function which converts special `f64` values to strings.
/// Non-special values are serialized as numbers.
#[allow(clippy::trivially_copy_pass_by_ref)]
fn serialize_f64<S>(value: &f64, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
if value.is_infinite() {
serializer.serialize_str(if *value > 0.0 { INFINITY } else { NEG_INFINITY })
} else if value.is_nan() {
serializer.serialize_str(NAN)
} else {
serializer.serialize_f64(*value)
}
}
/// Custom deserialization function for handling special f64 values.
fn deserialize_f64<'de, D>(deserializer: D) -> Result<f64, D::Error>
where
D: Deserializer<'de>,
{
struct UpperLimitVisitor;
impl<'de> de::Visitor<'de> for UpperLimitVisitor {
type Value = f64;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a number or a special string value")
}
fn visit_f64<E: de::Error>(self, value: f64) -> Result<Self::Value, E> {
Ok(value)
}
fn visit_str<E: de::Error>(self, value: &str) -> Result<Self::Value, E> {
match value {
NAN => Ok(f64::NAN),
INFINITY => Ok(f64::INFINITY),
NEG_INFINITY => Ok(f64::NEG_INFINITY),
_ => Err(E::custom("unsupported string value")),
}
}
}
deserializer.deserialize_any(UpperLimitVisitor)
}
/// A histogram bucket.
///
/// Histogram buckets represent the `count` of observations where the value of the observations does
/// not exceed the specified `upper_limit`.
#[configurable_component(no_deser, no_ser)]
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct Bucket {
/// The upper limit of values in the bucket.
#[serde(serialize_with = "serialize_f64", deserialize_with = "deserialize_f64")]
pub upper_limit: f64,
/// The number of values tracked in this bucket.
pub count: u64,
}
impl PartialEq for Bucket {
fn eq(&self, other: &Self) -> bool {
self.count == other.count && float_eq(self.upper_limit, other.upper_limit)
}
}
impl ByteSizeOf for Bucket {
fn allocated_bytes(&self) -> usize {
0
}
}
/// A single quantile observation.
///
/// Quantiles themselves are "cut points dividing the range of a probability distribution into
/// continuous intervals with equal probabilities". [[1][quantiles_wikipedia]].
///
/// We use quantiles to measure the value along these probability distributions for representing
/// client-side aggregations of distributions, which represent a collection of observations over a
/// specific time window.
///
/// In general, we typically use the term "quantile" to represent the concept of _percentiles_,
/// which deal with whole integers -- 0, 1, 2, .., 99, 100 -- even though quantiles are
/// floating-point numbers and can represent higher-precision cut points, such as 0.9999, or the
/// 99.99th percentile.
///
/// [quantiles_wikipedia]: https://en.wikipedia.org/wiki/Quantile
#[configurable_component]
#[derive(Clone, Copy, Debug)]
pub struct Quantile {
/// The value of the quantile.
///
/// This value must be between 0.0 and 1.0, inclusive.
pub quantile: f64,
/// The estimated value of the given quantile within the probability distribution.
pub value: f64,
}
impl PartialEq for Quantile {
fn eq(&self, other: &Self) -> bool {
float_eq(self.quantile, other.quantile) && float_eq(self.value, other.value)
}
}
impl Quantile {
/// Renders this quantile as a string, scaled to be a percentile.
///
/// Up to four significant digits are maintained, but the resulting string will be without a decimal point.
///
/// For example, a quantile of 0.25, which represents a percentile of 25, will be rendered as "25" and a quantile of
/// 0.9999, which represents a percentile of 99.99, will be rendered as "9999". A quantile of 0.99999, which
/// represents a percentile of 99.999, would also be rendered as "9999", though.
pub fn to_percentile_string(&self) -> String {
let clamped = self.quantile.clamp(0.0, 1.0) * 100.0;
clamped
.to_string()
.chars()
.take(5)
.filter(|c| *c != '.')
.collect()
}
/// Renders this quantile as a string.
///
/// Up to four significant digits are maintained.
///
/// For example, a quantile of 0.25 will be rendered as "0.25", and a quantile of 0.9999 will be rendered as
/// "0.9999", but a quantile of 0.99999 will be rendered as "0.9999".
pub fn to_quantile_string(&self) -> String {
let clamped = self.quantile.clamp(0.0, 1.0);
clamped.to_string().chars().take(6).collect()
}
}
impl ByteSizeOf for Quantile {
fn allocated_bytes(&self) -> usize {
0
}
}