vector_core/fanout.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
use std::{collections::HashMap, fmt, task::Poll, time::Instant};
use futures::{Stream, StreamExt};
use futures_util::{pending, poll};
use indexmap::IndexMap;
use tokio::sync::mpsc;
use tokio_util::sync::ReusableBoxFuture;
use vector_buffers::topology::channel::BufferSender;
use crate::{config::ComponentKey, event::EventArray};
pub enum ControlMessage {
/// Adds a new sink to the fanout.
Add(ComponentKey, BufferSender<EventArray>),
/// Removes a sink from the fanout.
Remove(ComponentKey),
/// Pauses a sink in the fanout.
///
/// If a fanout has any paused sinks, subsequent sends cannot proceed until all paused sinks
/// have been replaced.
Pause(ComponentKey),
/// Replaces a paused sink with its new sender.
Replace(ComponentKey, BufferSender<EventArray>),
}
impl fmt::Debug for ControlMessage {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ControlMessage::")?;
match self {
Self::Add(id, _) => write!(f, "Add({id:?})"),
Self::Remove(id) => write!(f, "Remove({id:?})"),
Self::Pause(id) => write!(f, "Pause({id:?})"),
Self::Replace(id, _) => write!(f, "Replace({id:?})"),
}
}
}
// TODO: We should really wrap this in a custom type that has dedicated methods for each operation
// so that high-lever components don't need to do the raw channel sends, etc.
pub type ControlChannel = mpsc::UnboundedSender<ControlMessage>;
pub struct Fanout {
senders: IndexMap<ComponentKey, Option<Sender>>,
control_channel: mpsc::UnboundedReceiver<ControlMessage>,
}
impl Fanout {
pub fn new() -> (Self, ControlChannel) {
let (control_tx, control_rx) = mpsc::unbounded_channel();
let fanout = Self {
senders: Default::default(),
control_channel: control_rx,
};
(fanout, control_tx)
}
/// Add a new sink as an output.
///
/// # Panics
///
/// Function will panic if a sink with the same ID is already present.
pub fn add(&mut self, id: ComponentKey, sink: BufferSender<EventArray>) {
assert!(
!self.senders.contains_key(&id),
"Adding duplicate output id to fanout: {id}"
);
self.senders.insert(id, Some(Sender::new(sink)));
}
fn remove(&mut self, id: &ComponentKey) {
assert!(
self.senders.shift_remove(id).is_some(),
"Removing nonexistent sink from fanout: {id}"
);
}
fn replace(&mut self, id: &ComponentKey, sink: BufferSender<EventArray>) {
match self.senders.get_mut(id) {
Some(sender) => {
// While a sink must be _known_ to be replaced, it must also be empty (previously
// paused or consumed when the `SendGroup` was created), otherwise an invalid
// sequence of control operations has been applied.
assert!(
sender.replace(Sender::new(sink)).is_none(),
"Replacing existing sink is not valid: {id}"
);
}
None => panic!("Replacing unknown sink from fanout: {id}"),
}
}
fn pause(&mut self, id: &ComponentKey) {
match self.senders.get_mut(id) {
Some(sender) => {
// A sink must be known and present to be replaced, otherwise an invalid sequence of
// control operations has been applied.
assert!(
sender.take().is_some(),
"Pausing nonexistent sink is not valid: {id}"
);
}
None => panic!("Pausing unknown sink from fanout: {id}"),
}
}
/// Apply a control message directly against this instance.
///
/// This method should not be used if there is an active `SendGroup` being processed.
fn apply_control_message(&mut self, message: ControlMessage) {
trace!("Processing control message outside of send: {:?}", message);
match message {
ControlMessage::Add(id, sink) => self.add(id, sink),
ControlMessage::Remove(id) => self.remove(&id),
ControlMessage::Pause(id) => self.pause(&id),
ControlMessage::Replace(id, sink) => self.replace(&id, sink),
}
}
/// Waits for all paused sinks to be replaced.
///
/// Control messages are processed until all senders have been replaced, so it is guaranteed
/// that when this method returns, all senders are ready for the next send to be triggered.
async fn wait_for_replacements(&mut self) {
while self.senders.values().any(Option::is_none) {
if let Some(msg) = self.control_channel.recv().await {
self.apply_control_message(msg);
} else {
// If the control channel is closed, there's nothing else we can do.
// TODO: It _seems_ like we should probably panic here, or at least return.
//
// Essentially, we should only land here if the control channel is closed but we
// haven't yet replaced all of the paused sinks... and we shouldn't have any paused
// sinks if Vector is stopping normally/gracefully, so like... we'd only get
// here during a configuration reload where we panicked in another thread due to
// an error of some sort, and the control channel got dropped, closed itself, and
// we're never going to be able to recover.
//
// The flipside is that by leaving it as-is, in the above hypothesized scenario,
// we'd avoid emitting additional panics/error logging when the root cause error was
// already doing so, like there's little value in knowing the fanout also hit an
// unrecoverable state if the whole process is about to come crashing down
// anyways... but it still does feel weird to have that encoded here by virtue of
// only a comment, and not an actual terminating expression. *shrug*
}
}
}
/// Send a stream of events to all connected sinks.
///
/// This function will send events until the provided stream finishes. It will also block on the
/// resolution of any pending reload before proceeding with a send operation, similar to `send`.
///
/// # Panics
///
/// This method can panic if the fanout receives a control message that violates some invariant
/// about its current state (e.g. remove a nonexistent sink, etc.). This would imply a bug in
/// Vector's config reloading logic.
///
/// # Errors
///
/// If an error occurs while sending events to any of the connected sinks, an error variant will be
/// returned detailing the cause.
pub async fn send_stream(
&mut self,
events: impl Stream<Item = (EventArray, Instant)>,
) -> crate::Result<()> {
tokio::pin!(events);
while let Some((event_array, send_reference)) = events.next().await {
self.send(event_array, Some(send_reference)).await?;
}
Ok(())
}
/// Send a batch of events to all connected sinks.
///
/// This will block on the resolution of any pending reload before proceeding with the send
/// operation.
///
/// # Panics
///
/// This method can panic if the fanout receives a control message that violates some invariant
/// about its current state (e.g. remove a nonexistent sink, etc). This would imply a bug in
/// Vector's config reloading logic.
///
/// # Errors
///
/// If an error occurs while sending events to any of the connected sinks, an error variant will be
/// returned detailing the cause.
pub async fn send(
&mut self,
events: EventArray,
send_reference: Option<Instant>,
) -> crate::Result<()> {
// First, process any available control messages in a non-blocking fashion.
while let Ok(message) = self.control_channel.try_recv() {
self.apply_control_message(message);
}
// Wait for any senders that are paused to be replaced first before continuing with the send.
self.wait_for_replacements().await;
// Nothing to send if we have no sender.
if self.senders.is_empty() {
trace!("No senders present.");
return Ok(());
}
// Keep track of whether the control channel has returned `Ready(None)`, and stop polling
// it once it has. If we don't do this check, it will continue to return `Ready(None)` any
// time it is polled, which can lead to a busy loop below.
//
// In real life this is likely a non-issue, but it can lead to strange behavior in tests if
// left unhandled.
let mut control_channel_open = true;
// Create our send group which arms all senders to send the given events, and handles
// adding/removing/replacing senders while the send is in-flight.
let mut send_group = SendGroup::new(&mut self.senders, events, send_reference);
loop {
tokio::select! {
// Semantically, it's not hugely important that this select is biased. It does,
// however, make testing simpler when you can count on control messages being
// processed first.
biased;
maybe_msg = self.control_channel.recv(), if control_channel_open => {
trace!("Processing control message inside of send: {:?}", maybe_msg);
// During a send operation, control messages must be applied via the
// `SendGroup`, since it has exclusive access to the senders.
match maybe_msg {
Some(ControlMessage::Add(id, sink)) => {
send_group.add(id, sink);
},
Some(ControlMessage::Remove(id)) => {
send_group.remove(&id);
},
Some(ControlMessage::Pause(id)) => {
send_group.pause(&id);
},
Some(ControlMessage::Replace(id, sink)) => {
send_group.replace(&id, Sender::new(sink));
},
None => {
// Control channel is closed, which means Vector is shutting down.
control_channel_open = false;
}
}
}
result = send_group.send() => match result {
Ok(()) => {
trace!("Sent item to fanout.");
break;
},
Err(e) => return Err(e),
}
}
}
Ok(())
}
}
struct SendGroup<'a> {
senders: &'a mut IndexMap<ComponentKey, Option<Sender>>,
sends: HashMap<ComponentKey, ReusableBoxFuture<'static, crate::Result<Sender>>>,
}
impl<'a> SendGroup<'a> {
fn new(
senders: &'a mut IndexMap<ComponentKey, Option<Sender>>,
events: EventArray,
send_reference: Option<Instant>,
) -> Self {
// If we don't have a valid `Sender` for all sinks, then something went wrong in our logic
// to ensure we were starting with all valid/idle senders prior to initiating the send.
debug_assert!(senders.values().all(Option::is_some));
let last_sender_idx = senders.len().saturating_sub(1);
let mut events = Some(events);
// We generate a send future for each sender we have, which arms them with the events to
// send but also takes ownership of the sender itself, which we give back when the sender completes.
let mut sends = HashMap::new();
for (i, (key, sender)) in senders.iter_mut().enumerate() {
let mut sender = sender
.take()
.expect("sender must be present to initialize SendGroup");
// First, arm each sender with the item to actually send.
if i == last_sender_idx {
sender.input = events.take();
} else {
sender.input.clone_from(&events);
}
sender.send_reference = send_reference;
// Now generate a send for that sender which we'll drive to completion.
let send = async move {
sender.flush().await?;
Ok(sender)
};
sends.insert(key.clone(), ReusableBoxFuture::new(send));
}
Self { senders, sends }
}
fn try_detach_send(&mut self, id: &ComponentKey) -> bool {
if let Some(send) = self.sends.remove(id) {
tokio::spawn(async move {
if let Err(e) = send.await {
warn!(
cause = %e,
message = "Encountered error writing to component after detaching from topology.",
);
}
});
true
} else {
false
}
}
#[allow(clippy::needless_pass_by_value)]
fn add(&mut self, id: ComponentKey, sink: BufferSender<EventArray>) {
// When we're in the middle of a send, we can only keep track of the new sink, but can't
// actually send to it, as we don't have the item to send... so only add it to `senders`.
assert!(
self.senders
.insert(id.clone(), Some(Sender::new(sink)))
.is_none(),
"Adding duplicate output id to fanout: {id}"
);
}
fn remove(&mut self, id: &ComponentKey) {
// We may or may not be removing a sender that we're try to drive a send against, so we have
// to also detach the send future for the sender if it exists, otherwise we'd be hanging
// around still trying to send to it.
assert!(
self.senders.shift_remove(id).is_some(),
"Removing nonexistent sink from fanout: {id}"
);
// Now try and detach the in-flight send, if it exists.
//
// We don't ensure that a send was or wasn't detached because this could be called either
// during an in-flight send _or_ after the send has completed.
self.try_detach_send(id);
}
fn replace(&mut self, id: &ComponentKey, sink: Sender) {
match self.senders.get_mut(id) {
Some(sender) => {
// While a sink must be _known_ to be replaced, it must also be empty (previously
// paused or consumed when the `SendGroup` was created), otherwise an invalid
// sequence of control operations has been applied.
assert!(
sender.replace(sink).is_none(),
"Replacing existing sink is not valid: {id}"
);
}
None => panic!("Replacing unknown sink from fanout: {id}"),
}
}
fn pause(&mut self, id: &ComponentKey) {
match self.senders.get_mut(id) {
Some(sender) => {
// If we don't currently own the `Sender` for the given component, that implies
// there is an in-flight send: a `SendGroup` cannot be created without all
// participating components having a send operation triggered.
//
// As such, `try_detach_send` should always succeed here, as pausing only occurs
// when a component is being _replaced_, and should not be called multiple times.
if sender.take().is_none() {
assert!(
self.try_detach_send(id),
"Pausing already-paused sink is invalid: {id}"
);
}
}
None => panic!("Pausing unknown sink from fanout: {id}"),
}
}
async fn send(&mut self) -> crate::Result<()> {
// Right now, we do a linear scan of all sends, polling each send once in order to avoid
// waiting forever, such that we can let our control messages get picked up while sends are
// waiting.
loop {
if self.sends.is_empty() {
break;
}
let mut done = Vec::new();
for (key, send) in &mut self.sends {
if let Poll::Ready(result) = poll!(send.get_pin()) {
let sender = result?;
// The send completed, so we restore the sender and mark ourselves so that this
// future gets dropped.
done.push((key.clone(), sender));
}
}
for (key, sender) in done {
self.sends.remove(&key);
self.replace(&key, sender);
}
if !self.sends.is_empty() {
// We manually yield ourselves because we've polled all of the sends at this point,
// so if any are left, then we're scheduled for a wake-up... this is a really poor
// approximation of what `FuturesUnordered` is doing.
pending!();
}
}
Ok(())
}
}
struct Sender {
inner: BufferSender<EventArray>,
input: Option<EventArray>,
send_reference: Option<Instant>,
}
impl Sender {
fn new(inner: BufferSender<EventArray>) -> Self {
Self {
inner,
input: None,
send_reference: None,
}
}
async fn flush(&mut self) -> crate::Result<()> {
let send_reference = self.send_reference.take();
if let Some(input) = self.input.take() {
self.inner.send(input, send_reference).await?;
self.inner.flush().await?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::mem;
use std::num::NonZeroUsize;
use futures::poll;
use tokio::sync::mpsc::UnboundedSender;
use tokio_test::{assert_pending, assert_ready, task::spawn};
use tracing::Span;
use vector_buffers::{
topology::{
builder::TopologyBuilder,
channel::{BufferReceiver, BufferSender},
},
WhenFull,
};
use vrl::value::Value;
use super::{ControlMessage, Fanout};
use crate::event::{Event, EventArray, LogEvent};
use crate::test_util::{collect_ready, collect_ready_events};
use crate::{config::ComponentKey, event::EventContainer};
async fn build_sender_pair(
capacity: usize,
) -> (BufferSender<EventArray>, BufferReceiver<EventArray>) {
TopologyBuilder::standalone_memory(
NonZeroUsize::new(capacity).expect("capacity must be nonzero"),
WhenFull::Block,
&Span::current(),
)
.await
}
async fn build_sender_pairs(
capacities: &[usize],
) -> Vec<(BufferSender<EventArray>, BufferReceiver<EventArray>)> {
let mut pairs = Vec::new();
for capacity in capacities {
pairs.push(build_sender_pair(*capacity).await);
}
pairs
}
async fn fanout_from_senders(
capacities: &[usize],
) -> (
Fanout,
UnboundedSender<ControlMessage>,
Vec<BufferReceiver<EventArray>>,
) {
let (mut fanout, control) = Fanout::new();
let pairs = build_sender_pairs(capacities).await;
let mut receivers = Vec::new();
for (i, (sender, receiver)) in pairs.into_iter().enumerate() {
fanout.add(ComponentKey::from(i.to_string()), sender);
receivers.push(receiver);
}
(fanout, control, receivers)
}
async fn add_sender_to_fanout(
fanout: &mut Fanout,
receivers: &mut Vec<BufferReceiver<EventArray>>,
sender_id: usize,
capacity: usize,
) {
let (sender, receiver) = build_sender_pair(capacity).await;
receivers.push(receiver);
fanout.add(ComponentKey::from(sender_id.to_string()), sender);
}
fn remove_sender_from_fanout(control: &UnboundedSender<ControlMessage>, sender_id: usize) {
control
.send(ControlMessage::Remove(ComponentKey::from(
sender_id.to_string(),
)))
.expect("sending control message should not fail");
}
async fn replace_sender_in_fanout(
control: &UnboundedSender<ControlMessage>,
receivers: &mut [BufferReceiver<EventArray>],
sender_id: usize,
capacity: usize,
) -> BufferReceiver<EventArray> {
let (sender, receiver) = build_sender_pair(capacity).await;
let old_receiver = mem::replace(&mut receivers[sender_id], receiver);
control
.send(ControlMessage::Pause(ComponentKey::from(
sender_id.to_string(),
)))
.expect("sending control message should not fail");
control
.send(ControlMessage::Replace(
ComponentKey::from(sender_id.to_string()),
sender,
))
.expect("sending control message should not fail");
old_receiver
}
async fn start_sender_replace(
control: &UnboundedSender<ControlMessage>,
receivers: &mut [BufferReceiver<EventArray>],
sender_id: usize,
capacity: usize,
) -> (BufferReceiver<EventArray>, BufferSender<EventArray>) {
let (sender, receiver) = build_sender_pair(capacity).await;
let old_receiver = mem::replace(&mut receivers[sender_id], receiver);
control
.send(ControlMessage::Pause(ComponentKey::from(
sender_id.to_string(),
)))
.expect("sending control message should not fail");
(old_receiver, sender)
}
fn finish_sender_resume(
control: &UnboundedSender<ControlMessage>,
sender_id: usize,
sender: BufferSender<EventArray>,
) {
control
.send(ControlMessage::Replace(
ComponentKey::from(sender_id.to_string()),
sender,
))
.expect("sending control message should not fail");
}
fn unwrap_log_event_message<E>(event: E) -> String
where
E: EventContainer,
{
let event = event
.into_events()
.next()
.expect("must have at least one event");
let event = event.into_log();
event
.get("message")
.and_then(Value::as_bytes)
.and_then(|b| String::from_utf8(b.to_vec()).ok())
.expect("must be valid log event with `message` field")
}
#[tokio::test]
async fn fanout_writes_to_all() {
let (mut fanout, _, receivers) = fanout_from_senders(&[2, 2]).await;
let events = make_event_array(2);
let clones = events.clone();
fanout.send(clones, None).await.expect("should not fail");
for receiver in receivers {
assert_eq!(collect_ready(receiver.into_stream()), &[events.clone()]);
}
}
#[tokio::test]
async fn fanout_notready() {
let (mut fanout, _, mut receivers) = fanout_from_senders(&[2, 1, 2]).await;
let events = make_events(2);
// First send should immediately complete because all senders have capacity:
let mut first_send = spawn(fanout.send(events[0].clone().into(), None));
assert_ready!(first_send.poll()).expect("should not fail");
drop(first_send);
// Second send should return pending because sender B is now full:
let mut second_send = spawn(fanout.send(events[1].clone().into(), None));
assert_pending!(second_send.poll());
// Now read an item from each receiver to free up capacity for the second sender:
for receiver in &mut receivers {
assert_eq!(Some(events[0].clone().into()), receiver.next().await);
}
// Now our second send should actually be able to complete:
assert_ready!(second_send.poll()).expect("should not fail");
drop(second_send);
// And make sure the second item comes through:
for receiver in &mut receivers {
assert_eq!(Some(events[1].clone().into()), receiver.next().await);
}
}
#[tokio::test]
async fn fanout_grow() {
let (mut fanout, _, mut receivers) = fanout_from_senders(&[4, 4]).await;
let events = make_events(3);
// Send in the first two events to our initial two senders:
fanout
.send(events[0].clone().into(), None)
.await
.expect("should not fail");
fanout
.send(events[1].clone().into(), None)
.await
.expect("should not fail");
// Now add a third sender:
add_sender_to_fanout(&mut fanout, &mut receivers, 2, 4).await;
// Send in the last event which all three senders will now get:
fanout
.send(events[2].clone().into(), None)
.await
.expect("should not fail");
// Make sure the first two senders got all three events, but the third sender only got the
// last event:
let expected_events = [&events, &events, &events[2..]];
for (i, receiver) in receivers.into_iter().enumerate() {
assert_eq!(
collect_ready_events(receiver.into_stream()),
expected_events[i]
);
}
}
#[tokio::test]
async fn fanout_shrink() {
let (mut fanout, control, receivers) = fanout_from_senders(&[4, 4]).await;
let events = make_events(3);
// Send in the first two events to our initial two senders:
fanout
.send(events[0].clone().into(), None)
.await
.expect("should not fail");
fanout
.send(events[1].clone().into(), None)
.await
.expect("should not fail");
// Now remove the second sender:
remove_sender_from_fanout(&control, 1);
// Send in the last event which only the first sender will get:
fanout
.send(events[2].clone().into(), None)
.await
.expect("should not fail");
// Make sure the first sender got all three events, but the second sender only got the first two:
let expected_events = [&events, &events[..2]];
for (i, receiver) in receivers.into_iter().enumerate() {
assert_eq!(
collect_ready_events(receiver.into_stream()),
expected_events[i]
);
}
}
#[tokio::test]
async fn fanout_shrink_when_notready() {
// This test exercises that when we're waiting for a send to complete, we can correctly
// remove a sink whether or not it is the one that the send operation is still waiting on.
//
// This means that if we remove a sink that a current send is blocked on, we should be able
// to immediately proceed.
let events = make_events(2);
let expected_first_event = unwrap_log_event_message(events[0].clone());
let expected_second_event = unwrap_log_event_message(events[1].clone());
let cases = [
// Sender ID to drop, whether the second send should succeed after dropping, and the
// final "last event" a receiver should see after the second send:
(
0,
false,
[
expected_second_event.clone(),
expected_first_event.clone(),
expected_second_event.clone(),
],
),
(
1,
true,
[
expected_second_event.clone(),
expected_second_event.clone(),
expected_second_event.clone(),
],
),
(
2,
false,
[
expected_second_event.clone(),
expected_first_event.clone(),
expected_second_event.clone(),
],
),
];
for (sender_id, should_complete, expected_last_seen) in cases {
let (mut fanout, control, mut receivers) = fanout_from_senders(&[2, 1, 2]).await;
// First send should immediately complete because all senders have capacity:
let mut first_send = spawn(fanout.send(events[0].clone().into(), None));
assert_ready!(first_send.poll()).expect("should not fail");
drop(first_send);
// Second send should return pending because sender B is now full:
let mut second_send = spawn(fanout.send(events[1].clone().into(), None));
assert_pending!(second_send.poll());
// Now drop our chosen sender and assert that polling the second send behaves as expected:
remove_sender_from_fanout(&control, sender_id);
if should_complete {
assert_ready!(second_send.poll()).expect("should not fail");
} else {
assert_pending!(second_send.poll());
}
drop(second_send);
// Now grab the last value available to each receiver and assert it's the second event.
drop(fanout);
let mut last_seen = Vec::new();
for receiver in &mut receivers {
let mut events = Vec::new();
while let Some(event) = receiver.next().await {
events.insert(0, event);
}
last_seen.push(unwrap_log_event_message(events.remove(0)));
}
assert_eq!(&expected_last_seen[..], &last_seen);
}
}
#[tokio::test]
async fn fanout_no_sinks() {
let (mut fanout, _) = Fanout::new();
let events = make_events(2);
fanout
.send(events[0].clone().into(), None)
.await
.expect("should not fail");
fanout
.send(events[1].clone().into(), None)
.await
.expect("should not fail");
}
#[tokio::test]
async fn fanout_replace() {
let (mut fanout, control, mut receivers) = fanout_from_senders(&[4, 4, 4]).await;
let events = make_events(3);
// First two sends should immediately complete because all senders have capacity:
fanout
.send(events[0].clone().into(), None)
.await
.expect("should not fail");
fanout
.send(events[1].clone().into(), None)
.await
.expect("should not fail");
// Replace the first sender with a brand new one before polling again:
let old_first_receiver = replace_sender_in_fanout(&control, &mut receivers, 0, 4).await;
// And do the third send which should also complete since all senders still have capacity:
fanout
.send(events[2].clone().into(), None)
.await
.expect("should not fail");
// Now make sure that the new "first" sender only got the third event, but that the second and
// third sender got all three events:
let expected_events = [&events[2..], &events, &events];
for (i, receiver) in receivers.into_iter().enumerate() {
assert_eq!(
collect_ready_events(receiver.into_stream()),
expected_events[i]
);
}
// And make sure our original "first" sender got the first two events:
assert_eq!(
collect_ready_events(old_first_receiver.into_stream()),
&events[..2]
);
}
#[tokio::test]
async fn fanout_wait() {
let (mut fanout, control, mut receivers) = fanout_from_senders(&[4, 4]).await;
let events = make_events(3);
// First two sends should immediately complete because all senders have capacity:
let send1 = Box::pin(fanout.send(events[0].clone().into(), None));
assert_ready!(poll!(send1)).expect("should not fail");
let send2 = Box::pin(fanout.send(events[1].clone().into(), None));
assert_ready!(poll!(send2)).expect("should not fail");
// Now do an empty replace on the second sender, which we'll test to make sure that `Fanout`
// doesn't let any writes through until we replace it properly. We get back the receiver
// we've replaced, but also the sender that we want to eventually install:
let (old_first_receiver, new_first_sender) =
start_sender_replace(&control, &mut receivers, 0, 4).await;
// Third send should return pending because now we have an in-flight replacement:
let mut third_send = spawn(fanout.send(events[2].clone().into(), None));
assert_pending!(third_send.poll());
// Finish our sender replacement, which should wake up the third send and allow it to
// actually complete:
finish_sender_resume(&control, 0, new_first_sender);
assert!(third_send.is_woken());
assert_ready!(third_send.poll()).expect("should not fail");
// Make sure the original first sender got the first two events, the new first sender got
// the last event, and the second sender got all three:
assert_eq!(
collect_ready_events(old_first_receiver.into_stream()),
&events[0..2]
);
let expected_events = [&events[2..], &events];
for (i, receiver) in receivers.into_iter().enumerate() {
assert_eq!(
collect_ready_events(receiver.into_stream()),
expected_events[i]
);
}
}
fn make_events_inner(count: usize) -> impl Iterator<Item = LogEvent> {
(0..count).map(|i| LogEvent::from(format!("line {i}")))
}
fn make_events(count: usize) -> Vec<Event> {
make_events_inner(count).map(Into::into).collect()
}
fn make_event_array(count: usize) -> EventArray {
make_events_inner(count).collect::<Vec<_>>().into()
}
}