vector_core/
fanout.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
use std::{collections::HashMap, fmt, task::Poll, time::Instant};

use futures::{Stream, StreamExt};
use futures_util::{pending, poll};
use indexmap::IndexMap;
use tokio::sync::mpsc;
use tokio_util::sync::ReusableBoxFuture;
use vector_buffers::topology::channel::BufferSender;

use crate::{config::ComponentKey, event::EventArray};

pub enum ControlMessage {
    /// Adds a new sink to the fanout.
    Add(ComponentKey, BufferSender<EventArray>),

    /// Removes a sink from the fanout.
    Remove(ComponentKey),

    /// Pauses a sink in the fanout.
    ///
    /// If a fanout has any paused sinks, subsequent sends cannot proceed until all paused sinks
    /// have been replaced.
    Pause(ComponentKey),

    /// Replaces a paused sink with its new sender.
    Replace(ComponentKey, BufferSender<EventArray>),
}

impl fmt::Debug for ControlMessage {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ControlMessage::")?;
        match self {
            Self::Add(id, _) => write!(f, "Add({id:?})"),
            Self::Remove(id) => write!(f, "Remove({id:?})"),
            Self::Pause(id) => write!(f, "Pause({id:?})"),
            Self::Replace(id, _) => write!(f, "Replace({id:?})"),
        }
    }
}

// TODO: We should really wrap this in a custom type that has dedicated methods for each operation
// so that high-lever components don't need to do the raw channel sends, etc.
pub type ControlChannel = mpsc::UnboundedSender<ControlMessage>;

pub struct Fanout {
    senders: IndexMap<ComponentKey, Option<Sender>>,
    control_channel: mpsc::UnboundedReceiver<ControlMessage>,
}

impl Fanout {
    pub fn new() -> (Self, ControlChannel) {
        let (control_tx, control_rx) = mpsc::unbounded_channel();

        let fanout = Self {
            senders: Default::default(),
            control_channel: control_rx,
        };

        (fanout, control_tx)
    }

    /// Add a new sink as an output.
    ///
    /// # Panics
    ///
    /// Function will panic if a sink with the same ID is already present.
    pub fn add(&mut self, id: ComponentKey, sink: BufferSender<EventArray>) {
        assert!(
            !self.senders.contains_key(&id),
            "Adding duplicate output id to fanout: {id}"
        );
        self.senders.insert(id, Some(Sender::new(sink)));
    }

    fn remove(&mut self, id: &ComponentKey) {
        assert!(
            self.senders.shift_remove(id).is_some(),
            "Removing nonexistent sink from fanout: {id}"
        );
    }

    fn replace(&mut self, id: &ComponentKey, sink: BufferSender<EventArray>) {
        match self.senders.get_mut(id) {
            Some(sender) => {
                // While a sink must be _known_ to be replaced, it must also be empty (previously
                // paused or consumed when the `SendGroup` was created), otherwise an invalid
                // sequence of control operations has been applied.
                assert!(
                    sender.replace(Sender::new(sink)).is_none(),
                    "Replacing existing sink is not valid: {id}"
                );
            }
            None => panic!("Replacing unknown sink from fanout: {id}"),
        }
    }

    fn pause(&mut self, id: &ComponentKey) {
        match self.senders.get_mut(id) {
            Some(sender) => {
                // A sink must be known and present to be replaced, otherwise an invalid sequence of
                // control operations has been applied.
                assert!(
                    sender.take().is_some(),
                    "Pausing nonexistent sink is not valid: {id}"
                );
            }
            None => panic!("Pausing unknown sink from fanout: {id}"),
        }
    }

    /// Apply a control message directly against this instance.
    ///
    /// This method should not be used if there is an active `SendGroup` being processed.
    fn apply_control_message(&mut self, message: ControlMessage) {
        trace!("Processing control message outside of send: {:?}", message);

        match message {
            ControlMessage::Add(id, sink) => self.add(id, sink),
            ControlMessage::Remove(id) => self.remove(&id),
            ControlMessage::Pause(id) => self.pause(&id),
            ControlMessage::Replace(id, sink) => self.replace(&id, sink),
        }
    }

    /// Waits for all paused sinks to be replaced.
    ///
    /// Control messages are processed until all senders have been replaced, so it is guaranteed
    /// that when this method returns, all senders are ready for the next send to be triggered.
    async fn wait_for_replacements(&mut self) {
        while self.senders.values().any(Option::is_none) {
            if let Some(msg) = self.control_channel.recv().await {
                self.apply_control_message(msg);
            } else {
                // If the control channel is closed, there's nothing else we can do.

                // TODO: It _seems_ like we should probably panic here, or at least return.
                //
                // Essentially, we should only land here if the control channel is closed but we
                // haven't yet replaced all of the paused sinks... and we shouldn't have any paused
                // sinks if Vector is stopping normally/gracefully, so like... we'd only get
                // here during a configuration reload where we panicked in another thread due to
                // an error of some sort, and the control channel got dropped, closed itself, and
                // we're never going to be able to recover.
                //
                // The flipside is that by leaving it as-is, in the above hypothesized scenario,
                // we'd avoid emitting additional panics/error logging when the root cause error was
                // already doing so, like there's little value in knowing the fanout also hit an
                // unrecoverable state if the whole process is about to come crashing down
                // anyways... but it still does feel weird to have that encoded here by virtue of
                // only a comment, and not an actual terminating expression. *shrug*
            }
        }
    }

    /// Send a stream of events to all connected sinks.
    ///
    /// This function will send events until the provided stream finishes. It will also block on the
    /// resolution of any pending reload before proceeding with a send operation, similar to `send`.
    ///
    /// # Panics
    ///
    /// This method can panic if the fanout receives a control message that violates some invariant
    /// about its current state (e.g. remove a nonexistent sink, etc.). This would imply a bug in
    /// Vector's config reloading logic.
    ///
    /// # Errors
    ///
    /// If an error occurs while sending events to any of the connected sinks, an error variant will be
    /// returned detailing the cause.
    pub async fn send_stream(
        &mut self,
        events: impl Stream<Item = (EventArray, Instant)>,
    ) -> crate::Result<()> {
        tokio::pin!(events);
        while let Some((event_array, send_reference)) = events.next().await {
            self.send(event_array, Some(send_reference)).await?;
        }
        Ok(())
    }

    /// Send a batch of events to all connected sinks.
    ///
    /// This will block on the resolution of any pending reload before proceeding with the send
    /// operation.
    ///
    /// # Panics
    ///
    /// This method can panic if the fanout receives a control message that violates some invariant
    /// about its current state (e.g. remove a nonexistent sink, etc). This would imply a bug in
    /// Vector's config reloading logic.
    ///
    /// # Errors
    ///
    /// If an error occurs while sending events to any of the connected sinks, an error variant will be
    /// returned detailing the cause.
    pub async fn send(
        &mut self,
        events: EventArray,
        send_reference: Option<Instant>,
    ) -> crate::Result<()> {
        // First, process any available control messages in a non-blocking fashion.
        while let Ok(message) = self.control_channel.try_recv() {
            self.apply_control_message(message);
        }

        // Wait for any senders that are paused to be replaced first before continuing with the send.
        self.wait_for_replacements().await;

        // Nothing to send if we have no sender.
        if self.senders.is_empty() {
            trace!("No senders present.");
            return Ok(());
        }

        // Keep track of whether the control channel has returned `Ready(None)`, and stop polling
        // it once it has. If we don't do this check, it will continue to return `Ready(None)` any
        // time it is polled, which can lead to a busy loop below.
        //
        // In real life this is likely a non-issue, but it can lead to strange behavior in tests if
        // left unhandled.
        let mut control_channel_open = true;

        // Create our send group which arms all senders to send the given events, and handles
        // adding/removing/replacing senders while the send is in-flight.
        let mut send_group = SendGroup::new(&mut self.senders, events, send_reference);

        loop {
            tokio::select! {
                // Semantically, it's not hugely important that this select is biased. It does,
                // however, make testing simpler when you can count on control messages being
                // processed first.
                biased;

                maybe_msg = self.control_channel.recv(), if control_channel_open => {
                    trace!("Processing control message inside of send: {:?}", maybe_msg);

                    // During a send operation, control messages must be applied via the
                    // `SendGroup`, since it has exclusive access to the senders.
                    match maybe_msg {
                        Some(ControlMessage::Add(id, sink)) => {
                            send_group.add(id, sink);
                        },
                        Some(ControlMessage::Remove(id)) => {
                            send_group.remove(&id);
                        },
                        Some(ControlMessage::Pause(id)) => {
                            send_group.pause(&id);
                        },
                        Some(ControlMessage::Replace(id, sink)) => {
                            send_group.replace(&id, Sender::new(sink));
                        },
                        None => {
                            // Control channel is closed, which means Vector is shutting down.
                            control_channel_open = false;
                        }
                    }
                }

                result = send_group.send() => match result {
                    Ok(()) => {
                        trace!("Sent item to fanout.");
                        break;
                    },
                    Err(e) => return Err(e),
                }
            }
        }

        Ok(())
    }
}

struct SendGroup<'a> {
    senders: &'a mut IndexMap<ComponentKey, Option<Sender>>,
    sends: HashMap<ComponentKey, ReusableBoxFuture<'static, crate::Result<Sender>>>,
}

impl<'a> SendGroup<'a> {
    fn new(
        senders: &'a mut IndexMap<ComponentKey, Option<Sender>>,
        events: EventArray,
        send_reference: Option<Instant>,
    ) -> Self {
        // If we don't have a valid `Sender` for all sinks, then something went wrong in our logic
        // to ensure we were starting with all valid/idle senders prior to initiating the send.
        debug_assert!(senders.values().all(Option::is_some));

        let last_sender_idx = senders.len().saturating_sub(1);
        let mut events = Some(events);

        // We generate a send future for each sender we have, which arms them with the events to
        // send but also takes ownership of the sender itself, which we give back when the sender completes.
        let mut sends = HashMap::new();
        for (i, (key, sender)) in senders.iter_mut().enumerate() {
            let mut sender = sender
                .take()
                .expect("sender must be present to initialize SendGroup");

            // First, arm each sender with the item to actually send.
            if i == last_sender_idx {
                sender.input = events.take();
            } else {
                sender.input.clone_from(&events);
            }
            sender.send_reference = send_reference;

            // Now generate a send for that sender which we'll drive to completion.
            let send = async move {
                sender.flush().await?;
                Ok(sender)
            };

            sends.insert(key.clone(), ReusableBoxFuture::new(send));
        }

        Self { senders, sends }
    }

    fn try_detach_send(&mut self, id: &ComponentKey) -> bool {
        if let Some(send) = self.sends.remove(id) {
            tokio::spawn(async move {
                if let Err(e) = send.await {
                    warn!(
                        cause = %e,
                        message = "Encountered error writing to component after detaching from topology.",
                    );
                }
            });
            true
        } else {
            false
        }
    }

    #[allow(clippy::needless_pass_by_value)]
    fn add(&mut self, id: ComponentKey, sink: BufferSender<EventArray>) {
        // When we're in the middle of a send, we can only keep track of the new sink, but can't
        // actually send to it, as we don't have the item to send... so only add it to `senders`.
        assert!(
            self.senders
                .insert(id.clone(), Some(Sender::new(sink)))
                .is_none(),
            "Adding duplicate output id to fanout: {id}"
        );
    }

    fn remove(&mut self, id: &ComponentKey) {
        // We may or may not be removing a sender that we're try to drive a send against, so we have
        // to also detach the send future for the sender if it exists, otherwise we'd be hanging
        // around still trying to send to it.
        assert!(
            self.senders.shift_remove(id).is_some(),
            "Removing nonexistent sink from fanout: {id}"
        );

        // Now try and detach the in-flight send, if it exists.
        //
        // We don't ensure that a send was or wasn't detached because this could be called either
        // during an in-flight send _or_ after the send has completed.
        self.try_detach_send(id);
    }

    fn replace(&mut self, id: &ComponentKey, sink: Sender) {
        match self.senders.get_mut(id) {
            Some(sender) => {
                // While a sink must be _known_ to be replaced, it must also be empty (previously
                // paused or consumed when the `SendGroup` was created), otherwise an invalid
                // sequence of control operations has been applied.
                assert!(
                    sender.replace(sink).is_none(),
                    "Replacing existing sink is not valid: {id}"
                );
            }
            None => panic!("Replacing unknown sink from fanout: {id}"),
        }
    }

    fn pause(&mut self, id: &ComponentKey) {
        match self.senders.get_mut(id) {
            Some(sender) => {
                // If we don't currently own the `Sender` for the given component, that implies
                // there is an in-flight send: a `SendGroup` cannot be created without all
                // participating components having a send operation triggered.
                //
                // As such, `try_detach_send` should always succeed here, as pausing only occurs
                // when a component is being _replaced_, and should not be called multiple times.
                if sender.take().is_none() {
                    assert!(
                        self.try_detach_send(id),
                        "Pausing already-paused sink is invalid: {id}"
                    );
                }
            }
            None => panic!("Pausing unknown sink from fanout: {id}"),
        }
    }

    async fn send(&mut self) -> crate::Result<()> {
        // Right now, we do a linear scan of all sends, polling each send once in order to avoid
        // waiting forever, such that we can let our control messages get picked up while sends are
        // waiting.
        loop {
            if self.sends.is_empty() {
                break;
            }

            let mut done = Vec::new();
            for (key, send) in &mut self.sends {
                if let Poll::Ready(result) = poll!(send.get_pin()) {
                    let sender = result?;

                    // The send completed, so we restore the sender and mark ourselves so that this
                    // future gets dropped.
                    done.push((key.clone(), sender));
                }
            }

            for (key, sender) in done {
                self.sends.remove(&key);
                self.replace(&key, sender);
            }

            if !self.sends.is_empty() {
                // We manually yield ourselves because we've polled all of the sends at this point,
                // so if any are left, then we're scheduled for a wake-up... this is a really poor
                // approximation of what `FuturesUnordered` is doing.
                pending!();
            }
        }

        Ok(())
    }
}

struct Sender {
    inner: BufferSender<EventArray>,
    input: Option<EventArray>,
    send_reference: Option<Instant>,
}

impl Sender {
    fn new(inner: BufferSender<EventArray>) -> Self {
        Self {
            inner,
            input: None,
            send_reference: None,
        }
    }

    async fn flush(&mut self) -> crate::Result<()> {
        let send_reference = self.send_reference.take();
        if let Some(input) = self.input.take() {
            self.inner.send(input, send_reference).await?;
            self.inner.flush().await?;
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::mem;
    use std::num::NonZeroUsize;

    use futures::poll;
    use tokio::sync::mpsc::UnboundedSender;
    use tokio_test::{assert_pending, assert_ready, task::spawn};
    use tracing::Span;
    use vector_buffers::{
        topology::{
            builder::TopologyBuilder,
            channel::{BufferReceiver, BufferSender},
        },
        WhenFull,
    };
    use vrl::value::Value;

    use super::{ControlMessage, Fanout};
    use crate::event::{Event, EventArray, LogEvent};
    use crate::test_util::{collect_ready, collect_ready_events};
    use crate::{config::ComponentKey, event::EventContainer};

    async fn build_sender_pair(
        capacity: usize,
    ) -> (BufferSender<EventArray>, BufferReceiver<EventArray>) {
        TopologyBuilder::standalone_memory(
            NonZeroUsize::new(capacity).expect("capacity must be nonzero"),
            WhenFull::Block,
            &Span::current(),
        )
        .await
    }

    async fn build_sender_pairs(
        capacities: &[usize],
    ) -> Vec<(BufferSender<EventArray>, BufferReceiver<EventArray>)> {
        let mut pairs = Vec::new();
        for capacity in capacities {
            pairs.push(build_sender_pair(*capacity).await);
        }
        pairs
    }

    async fn fanout_from_senders(
        capacities: &[usize],
    ) -> (
        Fanout,
        UnboundedSender<ControlMessage>,
        Vec<BufferReceiver<EventArray>>,
    ) {
        let (mut fanout, control) = Fanout::new();
        let pairs = build_sender_pairs(capacities).await;

        let mut receivers = Vec::new();
        for (i, (sender, receiver)) in pairs.into_iter().enumerate() {
            fanout.add(ComponentKey::from(i.to_string()), sender);
            receivers.push(receiver);
        }

        (fanout, control, receivers)
    }

    async fn add_sender_to_fanout(
        fanout: &mut Fanout,
        receivers: &mut Vec<BufferReceiver<EventArray>>,
        sender_id: usize,
        capacity: usize,
    ) {
        let (sender, receiver) = build_sender_pair(capacity).await;
        receivers.push(receiver);

        fanout.add(ComponentKey::from(sender_id.to_string()), sender);
    }

    fn remove_sender_from_fanout(control: &UnboundedSender<ControlMessage>, sender_id: usize) {
        control
            .send(ControlMessage::Remove(ComponentKey::from(
                sender_id.to_string(),
            )))
            .expect("sending control message should not fail");
    }

    async fn replace_sender_in_fanout(
        control: &UnboundedSender<ControlMessage>,
        receivers: &mut [BufferReceiver<EventArray>],
        sender_id: usize,
        capacity: usize,
    ) -> BufferReceiver<EventArray> {
        let (sender, receiver) = build_sender_pair(capacity).await;
        let old_receiver = mem::replace(&mut receivers[sender_id], receiver);

        control
            .send(ControlMessage::Pause(ComponentKey::from(
                sender_id.to_string(),
            )))
            .expect("sending control message should not fail");

        control
            .send(ControlMessage::Replace(
                ComponentKey::from(sender_id.to_string()),
                sender,
            ))
            .expect("sending control message should not fail");

        old_receiver
    }

    async fn start_sender_replace(
        control: &UnboundedSender<ControlMessage>,
        receivers: &mut [BufferReceiver<EventArray>],
        sender_id: usize,
        capacity: usize,
    ) -> (BufferReceiver<EventArray>, BufferSender<EventArray>) {
        let (sender, receiver) = build_sender_pair(capacity).await;
        let old_receiver = mem::replace(&mut receivers[sender_id], receiver);

        control
            .send(ControlMessage::Pause(ComponentKey::from(
                sender_id.to_string(),
            )))
            .expect("sending control message should not fail");

        (old_receiver, sender)
    }

    fn finish_sender_resume(
        control: &UnboundedSender<ControlMessage>,
        sender_id: usize,
        sender: BufferSender<EventArray>,
    ) {
        control
            .send(ControlMessage::Replace(
                ComponentKey::from(sender_id.to_string()),
                sender,
            ))
            .expect("sending control message should not fail");
    }

    fn unwrap_log_event_message<E>(event: E) -> String
    where
        E: EventContainer,
    {
        let event = event
            .into_events()
            .next()
            .expect("must have at least one event");
        let event = event.into_log();
        event
            .get("message")
            .and_then(Value::as_bytes)
            .and_then(|b| String::from_utf8(b.to_vec()).ok())
            .expect("must be valid log event with `message` field")
    }

    #[tokio::test]
    async fn fanout_writes_to_all() {
        let (mut fanout, _, receivers) = fanout_from_senders(&[2, 2]).await;
        let events = make_event_array(2);

        let clones = events.clone();
        fanout.send(clones, None).await.expect("should not fail");

        for receiver in receivers {
            assert_eq!(collect_ready(receiver.into_stream()), &[events.clone()]);
        }
    }

    #[tokio::test]
    async fn fanout_notready() {
        let (mut fanout, _, mut receivers) = fanout_from_senders(&[2, 1, 2]).await;
        let events = make_events(2);

        // First send should immediately complete because all senders have capacity:
        let mut first_send = spawn(fanout.send(events[0].clone().into(), None));
        assert_ready!(first_send.poll()).expect("should not fail");
        drop(first_send);

        // Second send should return pending because sender B is now full:
        let mut second_send = spawn(fanout.send(events[1].clone().into(), None));
        assert_pending!(second_send.poll());

        // Now read an item from each receiver to free up capacity for the second sender:
        for receiver in &mut receivers {
            assert_eq!(Some(events[0].clone().into()), receiver.next().await);
        }

        // Now our second send should actually be able to complete:
        assert_ready!(second_send.poll()).expect("should not fail");
        drop(second_send);

        // And make sure the second item comes through:
        for receiver in &mut receivers {
            assert_eq!(Some(events[1].clone().into()), receiver.next().await);
        }
    }

    #[tokio::test]
    async fn fanout_grow() {
        let (mut fanout, _, mut receivers) = fanout_from_senders(&[4, 4]).await;
        let events = make_events(3);

        // Send in the first two events to our initial two senders:
        fanout
            .send(events[0].clone().into(), None)
            .await
            .expect("should not fail");
        fanout
            .send(events[1].clone().into(), None)
            .await
            .expect("should not fail");

        // Now add a third sender:
        add_sender_to_fanout(&mut fanout, &mut receivers, 2, 4).await;

        // Send in the last event which all three senders will now get:
        fanout
            .send(events[2].clone().into(), None)
            .await
            .expect("should not fail");

        // Make sure the first two senders got all three events, but the third sender only got the
        // last event:
        let expected_events = [&events, &events, &events[2..]];
        for (i, receiver) in receivers.into_iter().enumerate() {
            assert_eq!(
                collect_ready_events(receiver.into_stream()),
                expected_events[i]
            );
        }
    }

    #[tokio::test]
    async fn fanout_shrink() {
        let (mut fanout, control, receivers) = fanout_from_senders(&[4, 4]).await;
        let events = make_events(3);

        // Send in the first two events to our initial two senders:
        fanout
            .send(events[0].clone().into(), None)
            .await
            .expect("should not fail");
        fanout
            .send(events[1].clone().into(), None)
            .await
            .expect("should not fail");

        // Now remove the second sender:
        remove_sender_from_fanout(&control, 1);

        // Send in the last event which only the first sender will get:
        fanout
            .send(events[2].clone().into(), None)
            .await
            .expect("should not fail");

        // Make sure the first sender got all three events, but the second sender only got the first two:
        let expected_events = [&events, &events[..2]];
        for (i, receiver) in receivers.into_iter().enumerate() {
            assert_eq!(
                collect_ready_events(receiver.into_stream()),
                expected_events[i]
            );
        }
    }

    #[tokio::test]
    async fn fanout_shrink_when_notready() {
        // This test exercises that when we're waiting for a send to complete, we can correctly
        // remove a sink whether or not it is the one that the send operation is still waiting on.
        //
        // This means that if we remove a sink that a current send is blocked on, we should be able
        // to immediately proceed.
        let events = make_events(2);
        let expected_first_event = unwrap_log_event_message(events[0].clone());
        let expected_second_event = unwrap_log_event_message(events[1].clone());

        let cases = [
            // Sender ID to drop, whether the second send should succeed after dropping, and the
            // final "last event" a receiver should see after the second send:
            (
                0,
                false,
                [
                    expected_second_event.clone(),
                    expected_first_event.clone(),
                    expected_second_event.clone(),
                ],
            ),
            (
                1,
                true,
                [
                    expected_second_event.clone(),
                    expected_second_event.clone(),
                    expected_second_event.clone(),
                ],
            ),
            (
                2,
                false,
                [
                    expected_second_event.clone(),
                    expected_first_event.clone(),
                    expected_second_event.clone(),
                ],
            ),
        ];

        for (sender_id, should_complete, expected_last_seen) in cases {
            let (mut fanout, control, mut receivers) = fanout_from_senders(&[2, 1, 2]).await;

            // First send should immediately complete because all senders have capacity:
            let mut first_send = spawn(fanout.send(events[0].clone().into(), None));
            assert_ready!(first_send.poll()).expect("should not fail");
            drop(first_send);

            // Second send should return pending because sender B is now full:
            let mut second_send = spawn(fanout.send(events[1].clone().into(), None));
            assert_pending!(second_send.poll());

            // Now drop our chosen sender and assert that polling the second send behaves as expected:
            remove_sender_from_fanout(&control, sender_id);

            if should_complete {
                assert_ready!(second_send.poll()).expect("should not fail");
            } else {
                assert_pending!(second_send.poll());
            }
            drop(second_send);

            // Now grab the last value available to each receiver and assert it's the second event.
            drop(fanout);

            let mut last_seen = Vec::new();
            for receiver in &mut receivers {
                let mut events = Vec::new();
                while let Some(event) = receiver.next().await {
                    events.insert(0, event);
                }

                last_seen.push(unwrap_log_event_message(events.remove(0)));
            }

            assert_eq!(&expected_last_seen[..], &last_seen);
        }
    }

    #[tokio::test]
    async fn fanout_no_sinks() {
        let (mut fanout, _) = Fanout::new();
        let events = make_events(2);

        fanout
            .send(events[0].clone().into(), None)
            .await
            .expect("should not fail");
        fanout
            .send(events[1].clone().into(), None)
            .await
            .expect("should not fail");
    }

    #[tokio::test]
    async fn fanout_replace() {
        let (mut fanout, control, mut receivers) = fanout_from_senders(&[4, 4, 4]).await;
        let events = make_events(3);

        // First two sends should immediately complete because all senders have capacity:
        fanout
            .send(events[0].clone().into(), None)
            .await
            .expect("should not fail");
        fanout
            .send(events[1].clone().into(), None)
            .await
            .expect("should not fail");

        // Replace the first sender with a brand new one before polling again:
        let old_first_receiver = replace_sender_in_fanout(&control, &mut receivers, 0, 4).await;

        // And do the third send which should also complete since all senders still have capacity:
        fanout
            .send(events[2].clone().into(), None)
            .await
            .expect("should not fail");

        // Now make sure that the new "first" sender only got the third event, but that the second and
        // third sender got all three events:
        let expected_events = [&events[2..], &events, &events];
        for (i, receiver) in receivers.into_iter().enumerate() {
            assert_eq!(
                collect_ready_events(receiver.into_stream()),
                expected_events[i]
            );
        }

        // And make sure our original "first" sender got the first two events:
        assert_eq!(
            collect_ready_events(old_first_receiver.into_stream()),
            &events[..2]
        );
    }

    #[tokio::test]
    async fn fanout_wait() {
        let (mut fanout, control, mut receivers) = fanout_from_senders(&[4, 4]).await;
        let events = make_events(3);

        // First two sends should immediately complete because all senders have capacity:
        let send1 = Box::pin(fanout.send(events[0].clone().into(), None));
        assert_ready!(poll!(send1)).expect("should not fail");
        let send2 = Box::pin(fanout.send(events[1].clone().into(), None));
        assert_ready!(poll!(send2)).expect("should not fail");

        // Now do an empty replace on the second sender, which we'll test to make sure that `Fanout`
        // doesn't let any writes through until we replace it properly.  We get back the receiver
        // we've replaced, but also the sender that we want to eventually install:
        let (old_first_receiver, new_first_sender) =
            start_sender_replace(&control, &mut receivers, 0, 4).await;

        // Third send should return pending because now we have an in-flight replacement:
        let mut third_send = spawn(fanout.send(events[2].clone().into(), None));
        assert_pending!(third_send.poll());

        // Finish our sender replacement, which should wake up the third send and allow it to
        // actually complete:
        finish_sender_resume(&control, 0, new_first_sender);
        assert!(third_send.is_woken());
        assert_ready!(third_send.poll()).expect("should not fail");

        // Make sure the original first sender got the first two events, the new first sender got
        // the last event, and the second sender got all three:
        assert_eq!(
            collect_ready_events(old_first_receiver.into_stream()),
            &events[0..2]
        );

        let expected_events = [&events[2..], &events];
        for (i, receiver) in receivers.into_iter().enumerate() {
            assert_eq!(
                collect_ready_events(receiver.into_stream()),
                expected_events[i]
            );
        }
    }

    fn make_events_inner(count: usize) -> impl Iterator<Item = LogEvent> {
        (0..count).map(|i| LogEvent::from(format!("line {i}")))
    }

    fn make_events(count: usize) -> Vec<Event> {
        make_events_inner(count).map(Into::into).collect()
    }

    fn make_event_array(count: usize) -> EventArray {
        make_events_inner(count).collect::<Vec<_>>().into()
    }
}