vector_stream/driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
use std::{collections::VecDeque, fmt, future::poll_fn, task::Poll};
use futures::{poll, FutureExt, Stream, StreamExt, TryFutureExt};
use tokio::{pin, select};
use tower::Service;
use tracing::Instrument;
use vector_common::internal_event::emit;
use vector_common::internal_event::{
register, ByteSize, BytesSent, CallError, InternalEventHandle as _, PollReadyError, Registered,
RegisteredEventCache, SharedString, TaggedEventsSent,
};
use vector_common::request_metadata::{GroupedCountByteSize, MetaDescriptive};
use vector_core::event::{EventFinalizers, EventStatus, Finalizable};
use super::FuturesUnorderedCount;
pub trait DriverResponse {
fn event_status(&self) -> EventStatus;
fn events_sent(&self) -> &GroupedCountByteSize;
/// Return the number of bytes that were sent in the request that returned this response.
// TODO, remove the default implementation once all sinks have
// implemented this function.
fn bytes_sent(&self) -> Option<usize> {
None
}
}
/// Drives the interaction between a stream of items and a service which processes them
/// asynchronously.
///
/// `Driver`, as a high-level, facilitates taking items from an arbitrary `Stream` and pushing them
/// through a `Service`, spawning each call to the service so that work can be run concurrently,
/// managing waiting for the service to be ready before processing more items, and so on.
///
/// Additionally, `Driver` handles event finalization, which triggers acknowledgements
/// to the source or disk buffer.
///
/// This capability is parameterized so any implementation which can define how to interpret the
/// response for each request, as well as define how many events a request is compromised of, can be
/// used with `Driver`.
pub struct Driver<St, Svc> {
input: St,
service: Svc,
protocol: Option<SharedString>,
}
impl<St, Svc> Driver<St, Svc> {
pub fn new(input: St, service: Svc) -> Self {
Self {
input,
service,
protocol: None,
}
}
/// Set the protocol name for this driver.
///
/// If this is set, the driver will fetch and use the `bytes_sent` value from responses in a
/// `BytesSent` event.
#[must_use]
pub fn protocol(mut self, protocol: impl Into<SharedString>) -> Self {
self.protocol = Some(protocol.into());
self
}
}
impl<St, Svc> Driver<St, Svc>
where
St: Stream,
St::Item: Finalizable + MetaDescriptive,
Svc: Service<St::Item>,
Svc::Error: fmt::Debug + 'static,
Svc::Future: Send + 'static,
Svc::Response: DriverResponse,
{
/// Runs the driver until the input stream is exhausted.
///
/// All in-flight calls to the provided `service` will also be completed before `run` returns.
///
/// # Errors
///
/// The return type is mostly to simplify caller code.
/// An error is currently only returned if a service returns an error from `poll_ready`
pub async fn run(self) -> Result<(), ()> {
let mut in_flight = FuturesUnorderedCount::new();
let mut next_batch: Option<VecDeque<St::Item>> = None;
let mut seq_num = 0usize;
let Self {
input,
mut service,
protocol,
} = self;
let batched_input = input.ready_chunks(1024);
pin!(batched_input);
let bytes_sent = protocol.map(|protocol| register(BytesSent { protocol }));
let events_sent = RegisteredEventCache::new(());
loop {
// Core behavior of the loop:
// - always check to see if we have any response futures that have completed
// -- if so, handling acking as many events as we can (ordering matters)
// - if we have a "current" batch, try to send each request in it to the service
// -- if we can't drain all requests from the batch due to lack of service readiness,
// then put the batch back and try to send the rest of it when the service is ready
// again
// - if we have no "current" batch, but there is an available batch from our input
// stream, grab that batch and store it as our current batch
//
// Essentially, we bounce back and forth between "grab the new batch from the input
// stream" and "send all requests in the batch to our service" which _could be trivially
// modeled with a normal imperative loop. However, we want to be able to interleave the
// acknowledgement of responses to allow buffers and sources to continue making forward
// progress, which necessitates a more complex weaving of logic. Using `select!` is
// more code, and requires a more careful eye than blindly doing
// "get_next_batch().await; process_batch().await", but it does make doing the complex
// logic easier than if we tried to interleave it ourselves with an imperative-style loop.
select! {
// Using `biased` ensures we check the branches in the order they're written, since
// the default behavior of the `select!` macro is to randomly order branches as a
// means of ensuring scheduling fairness.
biased;
// One or more of our service calls have completed.
Some(_count) = in_flight.next(), if !in_flight.is_empty() => {}
// We've got an input batch to process and the service is ready to accept a request.
maybe_ready = poll_fn(|cx| service.poll_ready(cx)), if next_batch.is_some() => {
let mut batch = next_batch.take()
.unwrap_or_else(|| unreachable!("batch should be populated"));
let mut maybe_ready = Some(maybe_ready);
while !batch.is_empty() {
// Make sure the service is ready to take another request.
let maybe_ready = match maybe_ready.take() {
Some(ready) => Poll::Ready(ready),
None => poll!(poll_fn(|cx| service.poll_ready(cx))),
};
let svc = match maybe_ready {
Poll::Ready(Ok(())) => &mut service,
Poll::Ready(Err(error)) => {
emit(PollReadyError{ error });
return Err(())
}
Poll::Pending => {
next_batch = Some(batch);
break
},
};
let mut req = batch.pop_front().unwrap_or_else(|| unreachable!("batch should not be empty"));
seq_num += 1;
let request_id = seq_num;
trace!(
message = "Submitting service request.",
in_flight_requests = in_flight.len(),
request_id,
);
let finalizers = req.take_finalizers();
let bytes_sent = bytes_sent.clone();
let events_sent = events_sent.clone();
let event_count = req.get_metadata().event_count();
let fut = svc.call(req)
.err_into()
.map(move |result| Self::handle_response(
result,
request_id,
finalizers,
event_count,
bytes_sent.as_ref(),
&events_sent,
))
.instrument(info_span!("request", request_id).or_current());
in_flight.push(fut);
}
}
// We've received some items from the input stream.
Some(reqs) = batched_input.next(), if next_batch.is_none() => {
next_batch = Some(reqs.into());
}
else => break
}
}
Ok(())
}
fn handle_response(
result: Result<Svc::Response, Svc::Error>,
request_id: usize,
finalizers: EventFinalizers,
event_count: usize,
bytes_sent: Option<&Registered<BytesSent>>,
events_sent: &RegisteredEventCache<(), TaggedEventsSent>,
) {
match result {
Err(error) => {
Self::emit_call_error(Some(error), request_id, event_count);
finalizers.update_status(EventStatus::Rejected);
}
Ok(response) => {
trace!(message = "Service call succeeded.", request_id);
finalizers.update_status(response.event_status());
if response.event_status() == EventStatus::Delivered {
if let Some(bytes_sent) = bytes_sent {
if let Some(byte_size) = response.bytes_sent() {
bytes_sent.emit(ByteSize(byte_size));
}
}
response.events_sent().emit_event(events_sent);
// This condition occurs specifically when the `HttpBatchService::call()` is called *within* the `Service::call()`
} else if response.event_status() == EventStatus::Rejected {
Self::emit_call_error(None, request_id, event_count);
finalizers.update_status(EventStatus::Rejected);
}
}
};
drop(finalizers); // suppress "argument not consumed" warning
}
/// Emit the `Error` and `EventsDropped` internal events.
/// This scenario occurs after retries have been attempted.
fn emit_call_error(error: Option<Svc::Error>, request_id: usize, count: usize) {
emit(CallError {
error,
request_id,
count,
});
}
}
#[cfg(test)]
mod tests {
use std::{
future::Future,
pin::Pin,
sync::{atomic::AtomicUsize, atomic::Ordering, Arc},
task::{ready, Context, Poll},
time::Duration,
};
use futures_util::stream;
use rand::{prelude::StdRng, SeedableRng};
use rand_distr::{Distribution, Pareto};
use tokio::{
sync::{OwnedSemaphorePermit, Semaphore},
time::sleep,
};
use tokio_util::sync::PollSemaphore;
use tower::Service;
use vector_common::{
finalization::{BatchNotifier, EventFinalizer, EventFinalizers, EventStatus, Finalizable},
json_size::JsonSize,
request_metadata::{GroupedCountByteSize, RequestMetadata},
};
use vector_common::{internal_event::CountByteSize, request_metadata::MetaDescriptive};
use super::{Driver, DriverResponse};
type Counter = Arc<AtomicUsize>;
#[derive(Debug)]
struct DelayRequest(EventFinalizers, RequestMetadata);
impl DelayRequest {
fn new(value: usize, counter: &Counter) -> Self {
let (batch, receiver) = BatchNotifier::new_with_receiver();
let counter = Arc::clone(counter);
tokio::spawn(async move {
receiver.await;
counter.fetch_add(value, Ordering::Relaxed);
});
Self(
EventFinalizers::new(EventFinalizer::new(batch)),
RequestMetadata::default(),
)
}
}
impl Finalizable for DelayRequest {
fn take_finalizers(&mut self) -> vector_core::event::EventFinalizers {
std::mem::take(&mut self.0)
}
}
impl MetaDescriptive for DelayRequest {
fn get_metadata(&self) -> &RequestMetadata {
&self.1
}
fn metadata_mut(&mut self) -> &mut RequestMetadata {
&mut self.1
}
}
struct DelayResponse {
events_sent: GroupedCountByteSize,
}
impl DelayResponse {
fn new() -> Self {
Self {
events_sent: CountByteSize(1, JsonSize::new(1)).into(),
}
}
}
impl DriverResponse for DelayResponse {
fn event_status(&self) -> EventStatus {
EventStatus::Delivered
}
fn events_sent(&self) -> &GroupedCountByteSize {
&self.events_sent
}
}
// Generic service that takes a usize and applies an arbitrary delay to returning it.
struct DelayService {
semaphore: PollSemaphore,
permit: Option<OwnedSemaphorePermit>,
jitter: Pareto<f64>,
jitter_gen: StdRng,
lower_bound_us: u64,
upper_bound_us: u64,
}
// Clippy is unhappy about all of our f64/u64 shuffling. We don't actually care about losing
// the fractional part of 20,459.13142 or whatever. It just doesn't matter for this test.
#[allow(clippy::cast_possible_truncation)]
#[allow(clippy::cast_precision_loss)]
impl DelayService {
pub(crate) fn new(permits: usize, lower_bound: Duration, upper_bound: Duration) -> Self {
assert!(upper_bound > lower_bound);
Self {
semaphore: PollSemaphore::new(Arc::new(Semaphore::new(permits))),
permit: None,
jitter: Pareto::new(1.0, 1.0).expect("distribution should be valid"),
jitter_gen: StdRng::from_seed([
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3,
8, 3, 2, 7, 9, 5,
]),
lower_bound_us: lower_bound.as_micros().max(10_000) as u64,
upper_bound_us: upper_bound.as_micros().max(10_000) as u64,
}
}
pub(crate) fn get_sleep_dur(&mut self) -> Duration {
let lower = self.lower_bound_us;
let upper = self.upper_bound_us;
// Generate a value between 10ms and 500ms, with a long tail shape to the distribution.
#[allow(clippy::cast_sign_loss)] // Value will be positive anyways
self.jitter
.sample_iter(&mut self.jitter_gen)
.map(|n| n * lower as f64)
.map(|n| n as u64)
.filter(|n| *n > lower && *n < upper)
.map(Duration::from_micros)
.next()
.expect("jitter iter should be endless")
}
}
impl Service<DelayRequest> for DelayService {
type Response = DelayResponse;
type Error = ();
type Future =
Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>> + Send + Sync>>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
assert!(
self.permit.is_none(),
"should not call poll_ready again after a successful call"
);
match ready!(self.semaphore.poll_acquire(cx)) {
None => panic!("semaphore should not be closed!"),
Some(permit) => assert!(self.permit.replace(permit).is_none()),
}
Poll::Ready(Ok(()))
}
fn call(&mut self, req: DelayRequest) -> Self::Future {
let permit = self
.permit
.take()
.expect("calling `call` without successful `poll_ready` is invalid");
let sleep_dur = self.get_sleep_dur();
Box::pin(async move {
sleep(sleep_dur).await;
// Manually drop our permit here so that we take ownership and then actually
// release the slot back to the semaphore.
drop(permit);
drop(req);
Ok(DelayResponse::new())
})
}
}
#[tokio::test]
async fn driver_simple() {
// This test uses a service which creates response futures that sleep for a variable, but
// bounded, amount of time, giving the impression of work being completed. Completion of
// all requests/responses is asserted by checking that the shared counter matches the
// expected ack amount. The delays themselves are deterministic based on a fixed-seed
// RNG, so the test should always run in a fairly constant time between runs.
//
// TODO: Given the use of a deterministic RNG, we could likely transition this test to be
// driven via `proptest`, to also allow driving the input requests. The main thing that we
// do not control is the arrival of requests in the input stream itself, which means that
// the generated batches will almost always be the biggest possible size, since the stream
// is always immediately available.
//
// It might be possible to spawn a background task to drive a true MPSC channel with
// requests based on input provided from `proptest` to control not only the value (which
// determines ack size) but the delay between messages, as well... simulating delays between
// bursts of messages, similar to real sources.
let counter = Counter::default();
// Set up our driver input stream, service, etc.
let input_requests = (1..=2048).collect::<Vec<_>>();
let input_total: usize = input_requests.iter().sum();
let input_stream = stream::iter(
input_requests
.into_iter()
.map(|i| DelayRequest::new(i, &counter)),
);
let service = DelayService::new(10, Duration::from_millis(5), Duration::from_millis(150));
let driver = Driver::new(input_stream, service);
// Now actually run the driver, consuming all of the input.
assert_eq!(driver.run().await, Ok(()));
// Make sure the final finalizer task runs.
tokio::task::yield_now().await;
assert_eq!(input_total, counter.load(Ordering::SeqCst));
}
}