Struct vector::sinks::prelude::ServiceBuilder

pub struct ServiceBuilder<L> { /* private fields */ }
Expand description

Declaratively construct Service values.

ServiceBuilder provides a builder-like interface for composing layers to be applied to a Service.

§Service

A Service is a trait representing an asynchronous function of a request to a response. It is similar to async fn(Request) -> Result<Response, Error>.

A Service is typically bound to a single transport, such as a TCP connection. It defines how all inbound or outbound requests are handled by that connection.

§Order

The order in which layers are added impacts how requests are handled. Layers that are added first will be called with the request first. The argument to service will be last to see the request.

ServiceBuilder::new()
    .buffer(100)
    .concurrency_limit(10)
    .service(svc)

In the above example, the buffer layer receives the request first followed by concurrency_limit. buffer enables up to 100 request to be in-flight on top of the requests that have already been forwarded to the next layer. Combined with concurrency_limit, this allows up to 110 requests to be in-flight.

ServiceBuilder::new()
    .concurrency_limit(10)
    .buffer(100)
    .service(svc)

The above example is similar, but the order of layers is reversed. Now, concurrency_limit applies first and only allows 10 requests to be in-flight total.

§Examples

A Service stack with a single layer:

ServiceBuilder::new()
    .concurrency_limit(5)
    .service(svc);

A Service stack with multiple layers that contain rate limiting, in-flight request limits, and a channel-backed, clonable Service:

ServiceBuilder::new()
    .buffer(5)
    .concurrency_limit(5)
    .rate_limit(5, Duration::from_secs(1))
    .service(svc);

Implementations§

§

impl ServiceBuilder<Identity>

pub fn new() -> ServiceBuilder<Identity>

Create a new ServiceBuilder.

§

impl<L> ServiceBuilder<L>

pub fn layer<T>(self, layer: T) -> ServiceBuilder<Stack<T, L>>

Add a new layer T into the ServiceBuilder.

This wraps the inner service with the service provided by a user-defined Layer. The provided layer must implement the Layer trait.

pub fn option_layer<T>( self, layer: Option<T>, ) -> ServiceBuilder<Stack<Either<T, Identity>, L>>

Optionally add a new layer T into the ServiceBuilder.

// Apply a timeout if configured
ServiceBuilder::new()
    .option_layer(timeout.map(TimeoutLayer::new))
    .service(svc)

pub fn layer_fn<F>(self, f: F) -> ServiceBuilder<Stack<LayerFn<F>, L>>

Add a [Layer] built from a function that accepts a service and returns another service.

See the documentation for layer_fn for more details.

pub fn buffer<Request>( self, bound: usize, ) -> ServiceBuilder<Stack<BufferLayer<Request>, L>>

Buffer requests when the next layer is not ready.

This wraps the inner service with an instance of the Buffer middleware.

pub fn concurrency_limit( self, max: usize, ) -> ServiceBuilder<Stack<ConcurrencyLimitLayer, L>>

Limit the max number of in-flight requests.

A request is in-flight from the time the request is received until the response future completes. This includes the time spent in the next layers.

This wraps the inner service with an instance of the ConcurrencyLimit middleware.

pub fn rate_limit( self, num: u64, per: Duration, ) -> ServiceBuilder<Stack<RateLimitLayer, L>>

Limit requests to at most num per the given duration.

This wraps the inner service with an instance of the RateLimit middleware.

pub fn retry<P>(self, policy: P) -> ServiceBuilder<Stack<RetryLayer<P>, L>>

Retry failed requests according to the given retry policy.

policy determines which failed requests will be retried. It must implement the retry::Policy trait.

This wraps the inner service with an instance of the Retry middleware.

pub fn timeout( self, timeout: Duration, ) -> ServiceBuilder<Stack<TimeoutLayer, L>>

Fail requests that take longer than timeout.

If the next layer takes more than timeout to respond to a request, processing is terminated and an error is returned.

This wraps the inner service with an instance of the timeout middleware.

pub fn filter<P>(self, predicate: P) -> ServiceBuilder<Stack<FilterLayer<P>, L>>

Conditionally reject requests based on predicate.

predicate must implement the Predicate trait.

This wraps the inner service with an instance of the Filter middleware.

pub fn filter_async<P>( self, predicate: P, ) -> ServiceBuilder<Stack<AsyncFilterLayer<P>, L>>

Conditionally reject requests based on an asynchronous predicate.

predicate must implement the AsyncPredicate trait.

This wraps the inner service with an instance of the AsyncFilter middleware.

pub fn map_request<F, R1, R2>( self, f: F, ) -> ServiceBuilder<Stack<MapRequestLayer<F>, L>>
where F: FnMut(R1) -> R2 + Clone,

Map one request type to another.

This wraps the inner service with an instance of the MapRequest middleware.

§Examples

Changing the type of a request:

use tower::ServiceBuilder;
use tower::ServiceExt;

// Suppose we have some `Service` whose request type is `String`:
let string_svc = tower::service_fn(|request: String| async move {
    println!("request: {}", request);
    Ok(())
});

// ...but we want to call that service with a `usize`. What do we do?

let usize_svc = ServiceBuilder::new()
     // Add a middlware that converts the request type to a `String`:
    .map_request(|request: usize| format!("{}", request))
    // ...and wrap the string service with that middleware:
    .service(string_svc);

// Now, we can call that service with a `usize`:
usize_svc.oneshot(42).await?;

Modifying the request value:

use tower::ServiceBuilder;
use tower::ServiceExt;

// A service that takes a number and returns it:
let svc = tower::service_fn(|request: usize| async move {
   Ok(request)
});

let svc = ServiceBuilder::new()
     // Add a middleware that adds 1 to each request
    .map_request(|request: usize| request + 1)
    .service(svc);

let response = svc.oneshot(1).await?;
assert_eq!(response, 2);

pub fn map_response<F>( self, f: F, ) -> ServiceBuilder<Stack<MapResponseLayer<F>, L>>

Map one response type to another.

This wraps the inner service with an instance of the MapResponse middleware.

See the documentation for the map_response combinator for details.

pub fn map_err<F>(self, f: F) -> ServiceBuilder<Stack<MapErrLayer<F>, L>>

Map one error type to another.

This wraps the inner service with an instance of the MapErr middleware.

See the documentation for the map_err combinator for details.

pub fn map_future<F>(self, f: F) -> ServiceBuilder<Stack<MapFutureLayer<F>, L>>

Composes a function that transforms futures produced by the service.

This wraps the inner service with an instance of the MapFutureLayer middleware.

See the documentation for the map_future combinator for details.

pub fn then<F>(self, f: F) -> ServiceBuilder<Stack<ThenLayer<F>, L>>

Apply an asynchronous function after the service, regardless of whether the future succeeds or fails.

This wraps the inner service with an instance of the Then middleware.

This is similar to the map_response and map_err functions, except that the same function is invoked when the service’s future completes, whether it completes successfully or fails. This function takes the Result returned by the service’s future, and returns a Result.

See the documentation for the then combinator for details.

pub fn and_then<F>(self, f: F) -> ServiceBuilder<Stack<AndThenLayer<F>, L>>

Executes a new future after this service’s future resolves. This does not alter the behaviour of the poll_ready method.

This method can be used to change the Response type of the service into a different type. You can use this method to chain along a computation once the service’s response has been resolved.

This wraps the inner service with an instance of the AndThen middleware.

See the documentation for the and_then combinator for details.

pub fn map_result<F>(self, f: F) -> ServiceBuilder<Stack<MapResultLayer<F>, L>>

Maps this service’s result type (Result<Self::Response, Self::Error>) to a different value, regardless of whether the future succeeds or fails.

This wraps the inner service with an instance of the MapResult middleware.

See the documentation for the map_result combinator for details.

pub fn into_inner(self) -> L

Returns the underlying Layer implementation.

pub fn service<S>(&self, service: S) -> <L as Layer<S>>::Service
where L: Layer<S>,

Wrap the service S with the middleware provided by this ServiceBuilder’s Layer’s, returning a new Service.

pub fn service_fn<F>(self, f: F) -> <L as Layer<ServiceFn<F>>>::Service
where L: Layer<ServiceFn<F>>,

Wrap the async function F with the middleware provided by this ServiceBuilder’s Layers, returning a new Service.

This is a convenience method which is equivalent to calling ServiceBuilder::service with a service_fn, like this:

ServiceBuilder::new()
    // ...
    .service(service_fn(handler_fn))
§Example
use std::time::Duration;
use tower::{ServiceBuilder, ServiceExt, BoxError, service_fn};

async fn handle(request: &'static str) -> Result<&'static str, BoxError> {
   Ok(request)
}

let svc = ServiceBuilder::new()
    .buffer(1024)
    .timeout(Duration::from_secs(10))
    .service_fn(handle);

let response = svc.oneshot("foo").await?;

assert_eq!(response, "foo");

pub fn check_clone(self) -> ServiceBuilder<L>

Check that the builder implements Clone.

This can be useful when debugging type errors in ServiceBuilders with lots of layers.

Doesn’t actually change the builder but serves as a type check.

§Example
use tower::ServiceBuilder;

let builder = ServiceBuilder::new()
    // Do something before processing the request
    .map_request(|request: String| {
        println!("got request!");
        request
    })
    // Ensure our `ServiceBuilder` can be cloned
    .check_clone()
    // Do something after processing the request
    .map_response(|response: String| {
        println!("got response!");
        response
    });

pub fn check_service_clone<S>(self) -> ServiceBuilder<L>
where L: Layer<S>, <L as Layer<S>>::Service: Clone,

Check that the builder when given a service of type S produces a service that implements Clone.

This can be useful when debugging type errors in ServiceBuilders with lots of layers.

Doesn’t actually change the builder but serves as a type check.

§Example
use tower::ServiceBuilder;

let builder = ServiceBuilder::new()
    // Do something before processing the request
    .map_request(|request: String| {
        println!("got request!");
        request
    })
    // Ensure that the service produced when given a `MyService` implements
    .check_service_clone::<MyService>()
    // Do something after processing the request
    .map_response(|response: String| {
        println!("got response!");
        response
    });

pub fn check_service<S, T, U, E>(self) -> ServiceBuilder<L>
where L: Layer<S>, <L as Layer<S>>::Service: Service<T, Response = U, Error = E>,

Check that the builder when given a service of type S produces a service with the given request, response, and error types.

This can be useful when debugging type errors in ServiceBuilders with lots of layers.

Doesn’t actually change the builder but serves as a type check.

§Example
use tower::ServiceBuilder;
use std::task::{Poll, Context};
use tower::{Service, ServiceExt};

// An example service
struct MyService;

impl Service<Request> for MyService {
  type Response = Response;
  type Error = Error;
  type Future = futures_util::future::Ready<Result<Response, Error>>;

  fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
      // ...
  }

  fn call(&mut self, request: Request) -> Self::Future {
      // ...
  }
}

struct Request;
struct Response;
struct Error;

struct WrappedResponse(Response);

let builder = ServiceBuilder::new()
    // At this point in the builder if given a `MyService` it produces a service that
    // accepts `Request`s, produces `Response`s, and fails with `Error`s
    .check_service::<MyService, Request, Response, Error>()
    // Wrap responses in `WrappedResponse`
    .map_response(|response: Response| WrappedResponse(response))
    // Now the response type will be `WrappedResponse`
    .check_service::<MyService, _, WrappedResponse, _>();

pub fn boxed<S, R>( self, ) -> ServiceBuilder<Stack<LayerFn<fn(_: <L as Layer<S>>::Service) -> BoxService<R, <<L as Layer<S>>::Service as Service<R>>::Response, <<L as Layer<S>>::Service as Service<R>>::Error>>, L>>
where L: Layer<S>, <L as Layer<S>>::Service: Service<R> + Send + 'static, <<L as Layer<S>>::Service as Service<R>>::Future: Send + 'static,

This wraps the inner service with the [Layer] returned by BoxService::layer().

See that method for more details.

§Example
use tower::{Service, ServiceBuilder, BoxError, util::BoxService};
use std::time::Duration;

let service: BoxService<Request, Response, BoxError> = ServiceBuilder::new()
    .boxed()
    .load_shed()
    .concurrency_limit(64)
    .timeout(Duration::from_secs(10))
    .service_fn(|req: Request| async {
        Ok::<_, BoxError>(Response::new())
    });

pub fn boxed_clone<S, R>( self, ) -> ServiceBuilder<Stack<LayerFn<fn(_: <L as Layer<S>>::Service) -> BoxCloneService<R, <<L as Layer<S>>::Service as Service<R>>::Response, <<L as Layer<S>>::Service as Service<R>>::Error>>, L>>
where L: Layer<S>, <L as Layer<S>>::Service: Service<R> + Clone + Send + 'static, <<L as Layer<S>>::Service as Service<R>>::Future: Send + 'static,

This wraps the inner service with the [Layer] returned by BoxCloneService::layer().

This is similar to the boxed method, but it requires that Self implement Clone, and the returned boxed service implements Clone.

See BoxCloneService for more details.

§Example
use tower::{Service, ServiceBuilder, BoxError, util::BoxCloneService};
use std::time::Duration;

let service: BoxCloneService<Request, Response, BoxError> = ServiceBuilder::new()
    .boxed_clone()
    .load_shed()
    .concurrency_limit(64)
    .timeout(Duration::from_secs(10))
    .service_fn(|req: Request| async {
        Ok::<_, BoxError>(Response::new())
    });

// The boxed service can still be cloned.
service.clone();

Trait Implementations§

§

impl<L> Clone for ServiceBuilder<L>
where L: Clone,

§

fn clone(&self) -> ServiceBuilder<L>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<L> Debug for ServiceBuilder<L>
where L: Debug,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for ServiceBuilder<Identity>

§

fn default() -> ServiceBuilder<Identity>

Returns the “default value” for a type. Read more
§

impl<S, L> Layer<S> for ServiceBuilder<L>
where L: Layer<S>,

§

type Service = <L as Layer<S>>::Service

The wrapped service
§

fn layer(&self, inner: S) -> <ServiceBuilder<L> as Layer<S>>::Service

Wrap the given service with the middleware, returning a new service that has been decorated with the middleware.
source§

impl<L> ServiceBuilderExt<L> for ServiceBuilder<L>

source§

fn map<R1, R2, F>(self, f: F) -> ServiceBuilder<Stack<MapLayer<R1, R2>, L>>
where F: Fn(R1) -> R2 + Send + Sync + 'static,

source§

fn settings<RL, Request>( self, settings: TowerRequestSettings, retry_logic: RL, ) -> ServiceBuilder<Stack<TowerRequestLayer<RL, Request>, L>>

Auto Trait Implementations§

§

impl<L> Freeze for ServiceBuilder<L>
where L: Freeze,

§

impl<L> RefUnwindSafe for ServiceBuilder<L>
where L: RefUnwindSafe,

§

impl<L> Send for ServiceBuilder<L>
where L: Send,

§

impl<L> Sync for ServiceBuilder<L>
where L: Sync,

§

impl<L> Unpin for ServiceBuilder<L>
where L: Unpin,

§

impl<L> UnwindSafe for ServiceBuilder<L>
where L: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> ArchivePointee for T

§

type ArchivedMetadata = ()

The archived version of the pointer metadata for this type.
§

fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata

Converts some archived metadata to the pointer metadata for itself.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<F, W, T, D> Deserialize<With<T, W>, D> for F
where W: DeserializeWith<F, T, D>, D: Fallible + ?Sized, F: ?Sized,

§

fn deserialize( &self, deserializer: &mut D, ) -> Result<With<T, W>, <D as Fallible>::Error>

Deserializes using the given deserializer
source§

impl<T> DynClone for T
where T: Clone,

source§

fn __clone_box(&self, _: Private) -> *mut ()

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> FromRef<T> for T
where T: Clone,

§

fn from_ref(input: &T) -> T

Converts to this type from a reference to the input type.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoRequest<T> for T

source§

fn into_request(self) -> Request<T>

Wrap the input message T in a tonic::Request
§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
§

impl<T> LayoutRaw for T

§

fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>

Gets the layout of the type.
§

impl<Source, Target> OctetsInto<Target> for Source
where Target: OctetsFrom<Source>,

§

type Error = <Target as OctetsFrom<Source>>::Error

§

fn try_octets_into( self, ) -> Result<Target, <Source as OctetsInto<Target>>::Error>

Performs the conversion.
§

fn octets_into(self) -> Target
where Self::Error: Into<Infallible>,

Performs an infallible conversion.
§

impl<D> OwoColorize for D

§

fn fg<C>(&self) -> FgColorDisplay<'_, C, Self>
where C: Color,

Set the foreground color generically Read more
§

fn bg<C>(&self) -> BgColorDisplay<'_, C, Self>
where C: Color,

Set the background color generically. Read more
§

fn black<'a>(&'a self) -> FgColorDisplay<'a, Black, Self>

Change the foreground color to black
§

fn on_black<'a>(&'a self) -> BgColorDisplay<'a, Black, Self>

Change the background color to black
§

fn red<'a>(&'a self) -> FgColorDisplay<'a, Red, Self>

Change the foreground color to red
§

fn on_red<'a>(&'a self) -> BgColorDisplay<'a, Red, Self>

Change the background color to red
§

fn green<'a>(&'a self) -> FgColorDisplay<'a, Green, Self>

Change the foreground color to green
§

fn on_green<'a>(&'a self) -> BgColorDisplay<'a, Green, Self>

Change the background color to green
§

fn yellow<'a>(&'a self) -> FgColorDisplay<'a, Yellow, Self>

Change the foreground color to yellow
§

fn on_yellow<'a>(&'a self) -> BgColorDisplay<'a, Yellow, Self>

Change the background color to yellow
§

fn blue<'a>(&'a self) -> FgColorDisplay<'a, Blue, Self>

Change the foreground color to blue
§

fn on_blue<'a>(&'a self) -> BgColorDisplay<'a, Blue, Self>

Change the background color to blue
§

fn magenta<'a>(&'a self) -> FgColorDisplay<'a, Magenta, Self>

Change the foreground color to magenta
§

fn on_magenta<'a>(&'a self) -> BgColorDisplay<'a, Magenta, Self>

Change the background color to magenta
§

fn purple<'a>(&'a self) -> FgColorDisplay<'a, Magenta, Self>

Change the foreground color to purple
§

fn on_purple<'a>(&'a self) -> BgColorDisplay<'a, Magenta, Self>

Change the background color to purple
§

fn cyan<'a>(&'a self) -> FgColorDisplay<'a, Cyan, Self>

Change the foreground color to cyan
§

fn on_cyan<'a>(&'a self) -> BgColorDisplay<'a, Cyan, Self>

Change the background color to cyan
§

fn white<'a>(&'a self) -> FgColorDisplay<'a, White, Self>

Change the foreground color to white
§

fn on_white<'a>(&'a self) -> BgColorDisplay<'a, White, Self>

Change the background color to white
§

fn default_color<'a>(&'a self) -> FgColorDisplay<'a, Default, Self>

Change the foreground color to the terminal default
§

fn on_default_color<'a>(&'a self) -> BgColorDisplay<'a, Default, Self>

Change the background color to the terminal default
§

fn bright_black<'a>(&'a self) -> FgColorDisplay<'a, BrightBlack, Self>

Change the foreground color to bright black
§

fn on_bright_black<'a>(&'a self) -> BgColorDisplay<'a, BrightBlack, Self>

Change the background color to bright black
§

fn bright_red<'a>(&'a self) -> FgColorDisplay<'a, BrightRed, Self>

Change the foreground color to bright red
§

fn on_bright_red<'a>(&'a self) -> BgColorDisplay<'a, BrightRed, Self>

Change the background color to bright red
§

fn bright_green<'a>(&'a self) -> FgColorDisplay<'a, BrightGreen, Self>

Change the foreground color to bright green
§

fn on_bright_green<'a>(&'a self) -> BgColorDisplay<'a, BrightGreen, Self>

Change the background color to bright green
§

fn bright_yellow<'a>(&'a self) -> FgColorDisplay<'a, BrightYellow, Self>

Change the foreground color to bright yellow
§

fn on_bright_yellow<'a>(&'a self) -> BgColorDisplay<'a, BrightYellow, Self>

Change the background color to bright yellow
§

fn bright_blue<'a>(&'a self) -> FgColorDisplay<'a, BrightBlue, Self>

Change the foreground color to bright blue
§

fn on_bright_blue<'a>(&'a self) -> BgColorDisplay<'a, BrightBlue, Self>

Change the background color to bright blue
§

fn bright_magenta<'a>(&'a self) -> FgColorDisplay<'a, BrightMagenta, Self>

Change the foreground color to bright magenta
§

fn on_bright_magenta<'a>(&'a self) -> BgColorDisplay<'a, BrightMagenta, Self>

Change the background color to bright magenta
§

fn bright_purple<'a>(&'a self) -> FgColorDisplay<'a, BrightMagenta, Self>

Change the foreground color to bright purple
§

fn on_bright_purple<'a>(&'a self) -> BgColorDisplay<'a, BrightMagenta, Self>

Change the background color to bright purple
§

fn bright_cyan<'a>(&'a self) -> FgColorDisplay<'a, BrightCyan, Self>

Change the foreground color to bright cyan
§

fn on_bright_cyan<'a>(&'a self) -> BgColorDisplay<'a, BrightCyan, Self>

Change the background color to bright cyan
§

fn bright_white<'a>(&'a self) -> FgColorDisplay<'a, BrightWhite, Self>

Change the foreground color to bright white
§

fn on_bright_white<'a>(&'a self) -> BgColorDisplay<'a, BrightWhite, Self>

Change the background color to bright white
§

fn bold<'a>(&'a self) -> BoldDisplay<'a, Self>

Make the text bold
§

fn dimmed<'a>(&'a self) -> DimDisplay<'a, Self>

Make the text dim
§

fn italic<'a>(&'a self) -> ItalicDisplay<'a, Self>

Make the text italicized
§

fn underline<'a>(&'a self) -> UnderlineDisplay<'a, Self>

Make the text italicized
Make the text blink
Make the text blink (but fast!)
§

fn reversed<'a>(&'a self) -> ReversedDisplay<'a, Self>

Swap the foreground and background colors
§

fn hidden<'a>(&'a self) -> HiddenDisplay<'a, Self>

Hide the text
§

fn strikethrough<'a>(&'a self) -> StrikeThroughDisplay<'a, Self>

Cross out the text
§

fn color<Color>(&self, color: Color) -> FgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the foreground color at runtime. Only use if you do not know which color will be used at compile-time. If the color is constant, use either OwoColorize::fg or a color-specific method, such as OwoColorize::green, Read more
§

fn on_color<Color>(&self, color: Color) -> BgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the background color at runtime. Only use if you do not know what color to use at compile-time. If the color is constant, use either OwoColorize::bg or a color-specific method, such as OwoColorize::on_yellow, Read more
§

fn fg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> FgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the foreground color to a specific RGB value.
§

fn bg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> BgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the background color to a specific RGB value.
§

fn truecolor(&self, r: u8, g: u8, b: u8) -> FgDynColorDisplay<'_, Rgb, Self>

Sets the foreground color to an RGB value.
§

fn on_truecolor(&self, r: u8, g: u8, b: u8) -> BgDynColorDisplay<'_, Rgb, Self>

Sets the background color to an RGB value.
§

fn style(&self, style: Style) -> Styled<&Self>

Apply a runtime-determined style
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Metadata = ()

The type for metadata in pointers and references to Self.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> WithCollector for T

source§

fn with_collector<C>(self, collector: C) -> WithDispatch<Self>
where C: Into<Dispatch>,

Attaches the provided collector to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_collector(self) -> WithDispatch<Self>

Attaches the current default collector to this type, returning a WithDispatch wrapper. Read more
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSend for T
where T: Send,

§

impl<T> MaybeSendSync for T